Comparative Analysis of Reinforcement Learning Algorithms for Finding Reaction Pathways: Insights from a Large Benchmark Data Set

水准点(测量) 强化学习 计算机科学 集合(抽象数据类型) 数据集 机器学习 人工智能 算法 大地测量学 程序设计语言 地理
作者
Yoshihiro Matsumura,Koji Tabata,Tamiki Komatsuzaki
出处
期刊:Journal of Chemical Theory and Computation [American Chemical Society]
标识
DOI:10.1021/acs.jctc.4c01780
摘要

The identification of kinetically feasible reaction pathways that connect a reactant to its product, including numerous intermediates and transition states, is crucial for predicting chemical reactions and elucidating reaction mechanisms. However, as molecular systems become increasingly complex or larger, the number of local minimum structures and transition states grows, which makes this task challenging, even with advanced computational approaches. We introduced a reinforcement learning algorithm to efficiently identify a kinetically feasible reaction pathway between a given local minimum structure for the reactant and a given one for the product, starting from the reactant. The performance of the algorithm was validated using a benchmark data set of large-scale chemical reaction path networks. Several search policies were proposed, using metrics based on energetic or structural similarity to the product's goal structure, for each local minimum structure candidate found during the search. The performances of baseline greedy, random, and uniform search policies varied substantially depending on the system. In contrast, exploration-exploitation balanced policies such as Thompson sampling, probability of improvement, and expected improvement consistently demonstrated stable and high performance. Furthermore, we characterized the search mechanisms that depend on different policies in detail. This study also addressed potential avenues for further research, such as hierarchical reinforcement learning and multiobjective optimization, which could deepen the problem setting explored in this study.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
孙佳琦完成签到,获得积分10
刚刚
1秒前
3秒前
3秒前
孙佳琦发布了新的文献求助10
4秒前
无花果应助universe采纳,获得30
4秒前
suyunzhe完成签到,获得积分10
4秒前
99668完成签到,获得积分10
5秒前
一个zzq发布了新的文献求助10
7秒前
朴树的兔子完成签到,获得积分10
8秒前
酷波er应助晓晓采纳,获得10
8秒前
mysticzz完成签到,获得积分10
9秒前
展会恩完成签到,获得积分10
9秒前
10秒前
10秒前
11秒前
一颗煤炭完成签到 ,获得积分10
11秒前
在水一方应助蔺子凡采纳,获得10
13秒前
斯文的道罡完成签到,获得积分10
14秒前
111111发布了新的文献求助10
14秒前
16秒前
羊羊完成签到 ,获得积分10
17秒前
二橦完成签到 ,获得积分10
17秒前
18秒前
fanli完成签到,获得积分10
20秒前
22秒前
余味应助风中的蜜蜂采纳,获得10
23秒前
孟德尔的豌豆完成签到 ,获得积分10
24秒前
25秒前
yu完成签到,获得积分10
25秒前
桂花乌龙完成签到,获得积分10
26秒前
26秒前
26秒前
张北海关注了科研通微信公众号
27秒前
wcy完成签到 ,获得积分10
27秒前
30秒前
ann发布了新的文献求助10
31秒前
racill完成签到 ,获得积分10
31秒前
蔺子凡发布了新的文献求助10
32秒前
可爱的函函应助白鹤卧雪采纳,获得30
33秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Conference Record, IAS Annual Meeting 1977 1250
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
APA educational psychology handbook, Vol 1: Theories, constructs, and critical issues 700
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3651973
求助须知:如何正确求助?哪些是违规求助? 3216162
关于积分的说明 9711019
捐赠科研通 2923965
什么是DOI,文献DOI怎么找? 1601432
邀请新用户注册赠送积分活动 754160
科研通“疑难数据库(出版商)”最低求助积分说明 732987