The increasing global concerns over energy consumption, environmental pollution, and sustainable development have sparked intensive research interest in advanced surface engineering solutions. This perspective critically reviews the development of superwettable surfaces as promising candidates for addressing these challenges. We analyze three key architectures that enable different levels of liquid repellency: micro/nano hierarchical structures for superhydrophobicity, re-entrant features for superoleophobicity, and doubly re-entrant designs for superomniphobicity. Recent developments have demonstrated significant progress in creating more environmentally conscious surfaces, including fluorine-free superhydrophobic textiles that reduce water and energy consumption in maintenance, energy-efficient smart windows with switchable wettability for building temperature regulation, and marine protective coatings that minimize chemical pollution. These advances contribute to environmental sustainability through multiple pathways: reduced resource consumption, improved energy efficiency, and decreased chemical pollution. However, challenges remain in achieving long-term durability, cost-effective fabrication, and comprehensive understanding of environmental impacts. This perspective provides insight into the current state of the field while highlighting the critical balance between performance optimization and environmental considerations in the development of next-generation superwettable materials.