Rapid Evaluation of Qingpi Products Using E‐Eye, Fast GC e‐Nose, and FT‐NIR

化学 色谱法
作者
Xiaoyu Fan,Jiayi Wang,Binghan Liu,Mingxuan Li,Peijun Sun,Jialei Wu,Shuai Zhang,Fangzhou Yin,Jining Liu,Tulin Lu,Lihong Chen
出处
期刊:Phytochemical Analysis [Wiley]
标识
DOI:10.1002/pca.3532
摘要

ABSTRACT Introduction Current standards for identifying the characteristics of Qingpi (QP) primarily depend on traditional empirical methods, which are both time‐consuming and labor‐intensive. Therefore, there is significant potential for developing a rapid and nondestructive identification method. Objective This work aims to realize fast and effective identification of QP and its processed products, to provide a basis for quality assurance and monitoring of QP and its processed products, and to provide reference for guiding the practical work of traditional Chinese medicine (TCM) identification. Methods In this study, we employed three advanced technologies—electronic eye (E‐eye), fast gas chromatography electronic nose (Fast GC e‐nose), and Fourier transform near‐infrared (FT‐NIR) spectroscopy—to analyze the color, odor, and absorbance of QP samples. Results The E‐eye digitized the appearance color of various QP samples, and subsequent discriminant analysis, combined with statistical methods, confirmed the feasibility of the discriminant function obtained. Additionally, the Fast GC e‐nose provided valuable odor information, identifying 18 distinct odor components. Based on variable importance in projection (VIP) analysis, four components were hypothesized as potential odor markers for distinguishing QP raw products (SQP) from vinegar processed products (CQP). According to the accuracy of the support vector machine (SVM) classification model, the NIR preprocessing method is screened. Alongside SVM, three classification models are chosen for simultaneous evaluation and verification. Notably, the test set recognition rate for all four classification models reached 100%. Conclusion E‐eye, Fast GC e‐nose, and NIR technology enable rapid, nondestructive identification and preliminary quality evaluation of QP products.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小顾完成签到,获得积分20
刚刚
在水一方应助科研通管家采纳,获得10
刚刚
Owen应助科研通管家采纳,获得10
刚刚
科研通AI5应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
SYLH应助科研通管家采纳,获得10
1秒前
Jasper应助科研通管家采纳,获得10
1秒前
上官若男应助科研通管家采纳,获得10
1秒前
Ava应助科研通管家采纳,获得10
1秒前
pluto应助科研通管家采纳,获得40
1秒前
李爱国应助科研通管家采纳,获得10
1秒前
FashionBoy应助科研通管家采纳,获得10
1秒前
ChenXY应助科研通管家采纳,获得40
1秒前
斯文败类应助科研通管家采纳,获得10
1秒前
积极向上完成签到,获得积分10
1秒前
汉堡包应助科研通管家采纳,获得10
1秒前
2秒前
合适友儿发布了新的文献求助10
2秒前
汉堡包应助科研通管家采纳,获得10
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
慕青应助科研通管家采纳,获得10
2秒前
852应助科研通管家采纳,获得10
2秒前
娜行完成签到 ,获得积分10
2秒前
3秒前
CipherSage应助好文章快快来采纳,获得10
4秒前
王桑完成签到 ,获得积分10
4秒前
Dr_luan发布了新的文献求助10
6秒前
漂亮的小刺猬完成签到,获得积分10
6秒前
max完成签到 ,获得积分10
6秒前
格格完成签到,获得积分10
8秒前
xiaojiang完成签到,获得积分10
9秒前
彭于晏应助严笑容采纳,获得30
10秒前
浮华应助YHL采纳,获得10
11秒前
淡定的幻枫完成签到 ,获得积分10
12秒前
13秒前
HEIKU应助努力采纳,获得10
13秒前
14秒前
14秒前
熊啊完成签到,获得积分20
14秒前
yazhang完成签到 ,获得积分10
15秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737471
求助须知:如何正确求助?哪些是违规求助? 3281244
关于积分的说明 10023902
捐赠科研通 2997978
什么是DOI,文献DOI怎么找? 1644908
邀请新用户注册赠送积分活动 782421
科研通“疑难数据库(出版商)”最低求助积分说明 749792