A novel tacholess order tracking method for planetary gearbox fault detection under variable rotational speed conditions

转速 变量(数学) 计算机科学 跟踪(教育) 故障检测与隔离 控制理论(社会学) 物理 数学 人工智能 数学分析 经典力学 心理学 教育学 控制(管理) 执行机构
作者
Chaoge Wang,Ran Wang,Yuanyuan Huang,Wang Li-jun,Hongkun Li
出处
期刊:Measurement Science and Technology [IOP Publishing]
标识
DOI:10.1088/1361-6501/adba7c
摘要

Abstract Planetary gearbox generally operates under variable speed conditions in response to actual industrial production requirements, which is prone to cause single or compound fault. The planetary gearbox fault signal exhibits time-varying, weak, and complex characteristics under varying conditions, and common diagnostic approaches are difficult to effectively extract and reveal fault-related features. In addition, the computed order tracking requires speed signal as auxiliary calculation. Unfortunately, due to economic and installation space limitations, encoders and tachometers are not always available, which poses a huge challenge for extracting variable speed planetary gearbox fault. To tackle these challenges, a novel tacholess order tracking method based on improved adaptive chirp mode decomposition (IACMD) and adaptive mximum second-order cyclostationarity blind deconvolution (CYCBD) is proposed for diagnosing planetary gearbox single and composite fault in this contribution. Firstly, the IACMD algorithm is utilized to adaptively decompose the fault signal, which constructs a composite index (CI)-based signal mode selection and recombination scheme to perform optimal modal decomposition. Secondly, the instantaneous dominant meshing multiply (IDMM) trend line with obvious amplitude advantage is extracted from the time-frequency representation of the original fault signal, and then converted to the reference shaft rotation frequency to perform angle domain resampling on sensitive model with the highest CI value. Thirdly, the adaptive CYCBD is adopted to deconvolute the angular domain sensitive modal to heighten the weak fault signatures. Finally, envelope spectrum of improved signal is utilized to identify prominent fault characteristic orders and ascertain failure type. Both numerical simulations and practical engineering data in different planetary gearbox failure cases have been thoroughly examined to demonstrate the correctness and feasibility of the proposed approach. Moreover, compared with some existing technologies demonstrates the superiority of the proposed approach.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
从梦完成签到,获得积分10
1秒前
Luna完成签到 ,获得积分10
2秒前
身法马可波罗完成签到 ,获得积分10
3秒前
3秒前
4秒前
俏皮短靴发布了新的文献求助10
4秒前
852应助Singularity采纳,获得10
5秒前
Metrix应助桂花酒酿采纳,获得10
5秒前
CipherSage应助纯真的丹雪采纳,获得10
6秒前
喜悦蚂蚁完成签到,获得积分10
7秒前
英俊的铭应助不如看海采纳,获得10
8秒前
Regulusyang完成签到,获得积分10
8秒前
8秒前
9秒前
YangSY发布了新的文献求助10
9秒前
烦烦完成签到,获得积分10
9秒前
9秒前
meo完成签到,获得积分10
9秒前
yhb发布了新的文献求助10
10秒前
cyia-完成签到,获得积分10
11秒前
12秒前
xiaoxiaoluo发布了新的文献求助10
13秒前
曹志毅完成签到 ,获得积分10
13秒前
小二郎应助烦烦采纳,获得10
13秒前
14秒前
吴陈发布了新的文献求助30
14秒前
田様应助成就的外套采纳,获得10
15秒前
轻松冰旋完成签到,获得积分10
16秒前
碧蓝丹烟完成签到 ,获得积分10
16秒前
桐桐应助JZG采纳,获得10
18秒前
冷傲的盼夏完成签到,获得积分10
18秒前
FashionBoy应助清新采纳,获得10
18秒前
18秒前
18秒前
别凡完成签到,获得积分10
19秒前
随意完成签到,获得积分10
20秒前
21秒前
QI完成签到,获得积分10
21秒前
qiao发布了新的文献求助10
22秒前
22秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Theory of Block Polymer Self-Assembly 750
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3512208
求助须知:如何正确求助?哪些是违规求助? 3094667
关于积分的说明 9224183
捐赠科研通 2789467
什么是DOI,文献DOI怎么找? 1530709
邀请新用户注册赠送积分活动 711048
科研通“疑难数据库(出版商)”最低求助积分说明 706518