Development of Machine Learning Algorithms for Application in Major Performance Enhancement in the Selective Catalytic Reduction (SCR) System

还原(数学) 选择性催化还原 田口方法 柴油机 氮氧化物 喷油器 汽车工程 工程类 催化作用 工艺工程 计算机科学 机械工程 机器学习 化学 数学 生物化学 几何学 有机化学 燃烧
作者
Sunghun Kim,Youngjin Park,Seungbeom Yoo,Ocktaeck Lim,Bernike Febriana Samosir
出处
期刊:Sustainability [Multidisciplinary Digital Publishing Institute]
卷期号:15 (9): 7077-7077 被引量:4
标识
DOI:10.3390/su15097077
摘要

Machine learning is used in this study to deal with the reduction in the design period and major performance improvement of the selective catalyst reduction system. The selective catalyst reduction system helps in the reduction in NOx emission in the diesel engine. The existing methods for the design and performance improvement of selective catalyst reduction systems tend to be inefficient, due to layout changes that require modification when mounting a vehicle based on previously designed models. There are some factors that can affect the design of the diesel engine selective catalyst reduction system that can be identified by applying an optimized design. The Taguchi orthogonal array design is used with the eight factors and three levels of the main design factors. The distance of the urea injector, the distance of the mixer, the inflow angle of the exhaust gas, the angle of the urea injector, the angle of the mixer, the mounting angle in the direction of rotation of the mixer inside the selective catalyst reduction pipe, the number of mixer blades, the and bending angle of the mixer blade are identified as the eight major factors involved. These factors can also be considered manufacturing factors and can be established through machine learning. Machine learning has the advantage of being more efficient compared to other methods in determining the relationship between the data for each mutual factor. Machine learning can help in reducing processing time, which can further decrease the cost of the design analysis and improve the performance of the selective catalyst reduction system. This study shows that the results are statistically significant as the p values of the mixer blade number and cone length are lower than 0.05.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4所得税d发布了新的文献求助10
3秒前
刘艳林完成签到,获得积分10
4秒前
战国瞳完成签到,获得积分10
5秒前
5秒前
6秒前
欢呼煎蛋完成签到,获得积分10
7秒前
9秒前
9秒前
maggiexjl完成签到,获得积分10
9秒前
三木足球完成签到,获得积分10
9秒前
871624521发布了新的文献求助10
10秒前
11秒前
13秒前
刘雨森完成签到,获得积分10
14秒前
潘盼盼发布了新的文献求助10
15秒前
17秒前
like完成签到 ,获得积分10
18秒前
SciGPT应助mango_采纳,获得10
20秒前
猪猪hero应助孟__采纳,获得10
20秒前
加快步伐发布了新的文献求助10
21秒前
丘比特应助汪汪采纳,获得10
23秒前
25秒前
彭于晏应助SCboxamn采纳,获得10
25秒前
25秒前
27秒前
小猪发布了新的文献求助10
30秒前
SYLH应助pengyuyan采纳,获得10
30秒前
鲸鱼不是鱼完成签到,获得积分10
30秒前
张雷应助MANGMANG采纳,获得10
32秒前
32秒前
Alicia发布了新的文献求助10
33秒前
33秒前
Hello应助文静沛萍采纳,获得10
34秒前
35秒前
奋斗藏花完成签到,获得积分10
35秒前
fan发布了新的文献求助10
36秒前
汪汪发布了新的文献求助10
37秒前
37秒前
37秒前
38秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952586
求助须知:如何正确求助?哪些是违规求助? 3498015
关于积分的说明 11089846
捐赠科研通 3228577
什么是DOI,文献DOI怎么找? 1784998
邀请新用户注册赠送积分活动 869061
科研通“疑难数据库(出版商)”最低求助积分说明 801341