Feature fusion and latent feature learning guided brain tumor segmentation and missing modality recovery network

计算机科学 人工智能 特征(语言学) 分割 模态(人机交互) 模式识别(心理学) 深度学习 特征学习 模式 社会科学 语言学 哲学 社会学
作者
Tongxue Zhou
出处
期刊:Pattern Recognition [Elsevier BV]
卷期号:141: 109665-109665 被引量:12
标识
DOI:10.1016/j.patcog.2023.109665
摘要

Accurate brain tumor segmentation is an essential step for clinical diagnosis and surgical treatment. Multimodal brain tumor segmentation strongly relies on an effective fusion method and an excellent segmentation network. However, it is common to have some missing MR modalities in clinical scenarios due to image corruption, acquisition protocol, scanner availability and scanning cost, which can heavily decrease the tumor segmentation accuracy, and also cause information loss for down-streaming disease analysis. To address this issue, I propose a novel multimodal feature fusion and latent feature learning guided deep neural network. On the one hand, the proposed network can help to segment brain tumors when one or more modalities are missing. On the other hand, it can retrieve the missing modalities to compensate for incomplete data. The proposed network consists of three key components. First, a Multimodal Feature Fusion Module (MFFM) is proposed to effectively fuse the complementary information from different modalities, consisting of a Cross-Modality Fusion Module (CMFM) and a Multi-Scale Fusion Module (MSFM). Second, a Spatial Consistency-based Latent Feature Learning Module (SC-LFLM) is presented to exploit multimodal latent correlation and extract the relevant features to benefit segmentation. Third, the Multi-Task Learning (MTL) paths are integrated to supervise the segmentation and recover the missing modalities. The proposed method is evaluated on BraTS 2018 dataset, and it can achieve superior segmentation results when one or more modalities are missing, compared with the state-of-the-art methods. Furthermore, the proposed modules can be easily adapted to other multimodal network architectures and research fields.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
思源应助飞云采纳,获得10
2秒前
在水一方应助123采纳,获得10
4秒前
5秒前
吴路发布了新的文献求助10
5秒前
善学以致用应助老阳采纳,获得10
6秒前
7秒前
7秒前
风中问晴完成签到,获得积分10
9秒前
11秒前
淡淡兔子完成签到 ,获得积分10
13秒前
谭久久完成签到,获得积分20
14秒前
于归发布了新的文献求助10
14秒前
老阳发布了新的文献求助10
17秒前
鲜艳的怜烟完成签到,获得积分10
19秒前
领导范儿应助吴路采纳,获得10
19秒前
Cactus应助Guoys采纳,获得10
21秒前
斯文败类应助NXK采纳,获得10
21秒前
852应助nicemice采纳,获得10
21秒前
科研通AI5应助踏雪飞鸿采纳,获得10
23秒前
大喵完成签到,获得积分10
24秒前
小李老博应助于归采纳,获得10
25秒前
夏夜之风完成签到 ,获得积分10
27秒前
贪玩薯片完成签到,获得积分10
28秒前
FashionBoy应助魏晓林采纳,获得10
28秒前
29秒前
29秒前
tetrakis完成签到,获得积分10
30秒前
32秒前
32秒前
NXK发布了新的文献求助10
33秒前
沐沐心完成签到 ,获得积分10
33秒前
冷傲的帽子完成签到 ,获得积分10
34秒前
34秒前
星辰大海应助老阳采纳,获得10
35秒前
Orange应助123采纳,获得10
36秒前
lisa完成签到 ,获得积分10
37秒前
nicemice发布了新的文献求助10
37秒前
情怀应助焗饭大王采纳,获得10
38秒前
李铛铛发布了新的文献求助10
39秒前
远航完成签到,获得积分10
40秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3738671
求助须知:如何正确求助?哪些是违规求助? 3282034
关于积分的说明 10027439
捐赠科研通 2998763
什么是DOI,文献DOI怎么找? 1645559
邀请新用户注册赠送积分活动 782819
科研通“疑难数据库(出版商)”最低求助积分说明 749975