Attentive Boundary-Aware Fusion for Defect Semantic Segmentation Using Transformer

分割 计算机科学 人工智能 像素 边界(拓扑) 模式识别(心理学) 图像分割 变压器 背景(考古学) 计算机视觉 班级(哲学) 特征(语言学) 数据挖掘 数学 工程类 古生物学 哲学 数学分析 电压 电气工程 生物 语言学
作者
Ching-Chi Yeung,Kin‐Man Lam
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-13 被引量:18
标识
DOI:10.1109/tim.2023.3271723
摘要

Defect semantic segmentation is a pixel-level inspection technique to guarantee the quality of various products. It can obtain the precise location of defects by assigning a class label to each image pixel. Due to the confusing appearance of various defects, most existing defect semantic segmentation methods still suffer from the problem of intra-class difference and inter-class indiscrimination. To tackle these challenges, we propose an attentive boundary-aware transformer framework, namely ABFormer, for segmenting different types of defects. Specifically, we propose a split-attention boundary-aware fusion (SABF) to split and integrate boundary and context features with two different attention modules. It can enrich and fuse the feature maps more efficiently. Moreover, we propose a boundary-aware spatial attention module (BSAM) to capture the spatial interdependencies between the positions of boundary features and context features. This module can enhance the consistency of defect features of the same class for solving the intra-class difference problem. Furthermore, we propose a boundary-aware channel attention module (BCAM) to model the semantic relationship between the channels of boundary features and context features. This module can reinforce the discrimination between defect features of different classes for handling the inter-class indiscrimination problem. Experimental results on three defect semantic segmentation datasets, namely NEU-Seg, MT-Defect, and MSD, demonstrate that our proposed method outperforms the state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美世界应助科研通管家采纳,获得10
刚刚
lulu完成签到 ,获得积分10
刚刚
刚刚
Ava应助科研通管家采纳,获得10
刚刚
无情的听蓉完成签到,获得积分10
刚刚
刚刚
Xiaoxiao应助科研通管家采纳,获得10
刚刚
所所应助科研通管家采纳,获得10
刚刚
Richard发布了新的文献求助10
刚刚
朴实灵竹应助科研通管家采纳,获得30
刚刚
浮游应助科研通管家采纳,获得10
刚刚
脑洞疼应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
浮游应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
小杭76应助科研通管家采纳,获得10
1秒前
Jasper应助追寻代真采纳,获得10
1秒前
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
共享精神应助科研通管家采纳,获得10
1秒前
tough发布了新的文献求助10
1秒前
1秒前
SciGPT应助执着的海采纳,获得10
1秒前
华仔应助科研通管家采纳,获得10
1秒前
Jasper应助科研通管家采纳,获得10
1秒前
卖粥的果发布了新的文献求助10
1秒前
天天快乐应助研友_nEWly8采纳,获得10
1秒前
D颖发布了新的文献求助10
1秒前
科目三应助科研通管家采纳,获得10
2秒前
乐乐应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
2秒前
小杭76应助科研通管家采纳,获得10
2秒前
2秒前
wanci应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5260162
求助须知:如何正确求助?哪些是违规求助? 4421632
关于积分的说明 13763676
捐赠科研通 4295814
什么是DOI,文献DOI怎么找? 2357032
邀请新用户注册赠送积分活动 1353405
关于科研通互助平台的介绍 1314609