Attentive Boundary-Aware Fusion for Defect Semantic Segmentation Using Transformer

分割 计算机科学 人工智能 像素 边界(拓扑) 模式识别(心理学) 图像分割 变压器 背景(考古学) 计算机视觉 班级(哲学) 特征(语言学) 数据挖掘 数学 工程类 古生物学 哲学 数学分析 电压 电气工程 生物 语言学
作者
Ching-Chi Yeung,Kin‐Man Lam
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-13 被引量:33
标识
DOI:10.1109/tim.2023.3271723
摘要

Defect semantic segmentation is a pixel-level inspection technique to guarantee the quality of various products. It can obtain the precise location of defects by assigning a class label to each image pixel. Due to the confusing appearance of various defects, most existing defect semantic segmentation methods still suffer from the problem of intra-class difference and inter-class indiscrimination. To tackle these challenges, we propose an attentive boundary-aware transformer framework, namely ABFormer, for segmenting different types of defects. Specifically, we propose a split-attention boundary-aware fusion (SABF) to split and integrate boundary and context features with two different attention modules. It can enrich and fuse the feature maps more efficiently. Moreover, we propose a boundary-aware spatial attention module (BSAM) to capture the spatial interdependencies between the positions of boundary features and context features. This module can enhance the consistency of defect features of the same class for solving the intra-class difference problem. Furthermore, we propose a boundary-aware channel attention module (BCAM) to model the semantic relationship between the channels of boundary features and context features. This module can reinforce the discrimination between defect features of different classes for handling the inter-class indiscrimination problem. Experimental results on three defect semantic segmentation datasets, namely NEU-Seg, MT-Defect, and MSD, demonstrate that our proposed method outperforms the state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
HYT发布了新的文献求助10
刚刚
巴拉巴拉发布了新的文献求助10
刚刚
傲天大侠发布了新的文献求助10
1秒前
dora完成签到,获得积分20
1秒前
852应助dawdwada采纳,获得10
1秒前
healer完成签到,获得积分10
1秒前
奋斗的南风关注了科研通微信公众号
1秒前
酷波er应助111采纳,获得10
1秒前
2秒前
2秒前
3秒前
3秒前
高大的老头完成签到,获得积分10
4秒前
4秒前
5秒前
蓝色斑马发布了新的文献求助10
5秒前
如约而至完成签到,获得积分10
6秒前
flh完成签到,获得积分10
6秒前
6秒前
6秒前
dslhxwlkm发布了新的文献求助10
7秒前
qiu发布了新的文献求助20
7秒前
7秒前
like发布了新的文献求助10
7秒前
8秒前
日富一日发布了新的文献求助10
8秒前
随便完成签到,获得积分10
8秒前
114514完成签到,获得积分10
9秒前
9秒前
量子星尘发布了新的文献求助30
10秒前
宇月幸成发布了新的文献求助10
10秒前
11秒前
11秒前
惔惔惔发布了新的文献求助10
11秒前
马子妍发布了新的文献求助10
12秒前
叮咚完成签到,获得积分10
12秒前
Owen应助汝桢采纳,获得10
12秒前
12秒前
13秒前
邱扬智发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5719256
求助须知:如何正确求助?哪些是违规求助? 5255673
关于积分的说明 15288302
捐赠科研通 4869143
什么是DOI,文献DOI怎么找? 2614653
邀请新用户注册赠送积分活动 1564667
关于科研通互助平台的介绍 1521894