Determination of various fabric defects using different machine learning techniques

人工智能 特征提取 模式识别(心理学) 计算机科学 支持向量机 特征选择 主成分分析 决策树 k-最近邻算法
作者
Fatma Günseli Yaşar Çıklaçandır,Semih Utku,Hakan Özdemir
出处
期刊:Journal of The Textile Institute [Informa]
卷期号:115 (5): 733-743 被引量:5
标识
DOI:10.1080/00405000.2023.2201978
摘要

Automatic systems are needed to recognize the fabric defects in textile manufacturing. For many years, systems that detect defects in the shortest time and with high accuracy have been researched. However, the multiplicity of the type of defect and the variability of the background made it difficult to recognize the defects. In this study, seven different feature sets based on Discrete Cosine Transform, Principal Component Analysis, Gray Level Co-occurrence Matrix, and Deep Learning Architectures have been used to detect defects. The extracted features have been classified by three different classification techniques (K-Nearest Neighbor, Support Vector Machine, and Decision Tree). The aim of this study is to investigate the effects of different feature extraction methods. The paper provides examination of the performances of different feature extraction methods and different classifiers. Methods have been evaluated in terms of precision, recall, F1-measure, and accuracy on two different datasets. mRMR feature selection after ResNet18 based feature extraction has enabled to obtain the features with the highest results in the study (0.831). Experimental results show that CNN-based feature extraction is more successful than statistical-based feature extraction methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
姜水完成签到,获得积分10
刚刚
emm完成签到,获得积分10
2秒前
johnny完成签到,获得积分10
2秒前
2秒前
77完成签到,获得积分10
2秒前
戚小完成签到,获得积分10
2秒前
激昂的柚子完成签到,获得积分10
2秒前
L318完成签到,获得积分10
4秒前
nuoran完成签到,获得积分10
4秒前
龙眼完成签到,获得积分10
4秒前
Weiweiweixiao完成签到,获得积分10
4秒前
LingMg完成签到 ,获得积分10
4秒前
Hello应助123木头人采纳,获得10
5秒前
是玥玥啊完成签到,获得积分10
5秒前
5秒前
拉塞尔完成签到,获得积分10
6秒前
whisper发布了新的文献求助10
6秒前
Sylvia41完成签到,获得积分10
6秒前
zl发布了新的文献求助10
6秒前
追寻的怜容完成签到,获得积分10
7秒前
科研小白完成签到,获得积分10
7秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
orixero应助小鱼儿采纳,获得10
8秒前
L318发布了新的文献求助10
9秒前
Nuyoah完成签到,获得积分10
9秒前
9秒前
李清杰完成签到,获得积分10
9秒前
今后应助斯文的以亦采纳,获得10
10秒前
冷傲的元容完成签到,获得积分10
10秒前
painx完成签到,获得积分10
11秒前
11秒前
kobe发布了新的文献求助10
11秒前
12秒前
风吹草动玉米粒完成签到,获得积分10
12秒前
令狐擎宇发布了新的文献求助10
12秒前
大气指甲油完成签到,获得积分10
12秒前
大民王完成签到,获得积分10
12秒前
jing完成签到,获得积分20
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5651723
求助须知:如何正确求助?哪些是违规求助? 4785782
关于积分的说明 15055712
捐赠科研通 4810402
什么是DOI,文献DOI怎么找? 2573132
邀请新用户注册赠送积分活动 1529020
关于科研通互助平台的介绍 1488014