The Clinical Application of Artificial Intelligence Assisted Contrast-Enhanced Ultrasound on BI-RADS Category 4 Breast Lesions

双雷达 对比度(视觉) 乳房成像 乳腺超声检查 放射科 人工智能 计算机科学 医学 乳腺摄影术 内科学 乳腺癌 癌症
作者
Yuqun Wang,Xu Zhou,Lei Tang,Qi Zhang,Man Chen
出处
期刊:Academic Radiology [Elsevier BV]
卷期号:30: S104-S113 被引量:3
标识
DOI:10.1016/j.acra.2023.03.005
摘要

To propose a novel deep learning method incorporating multiple regions based on contrast-enhanced ultrasound and grayscale ultrasound, evaluate its performance in reducing false positives for Breast Imaging Reporting and Data System (BI-RADS) category 4 lesions, and compare its diagnostic performance with that of ultrasound experts.This study enrolled 163 breast lesions in 161 women from November 2018 to March 2021. Contrast-enhanced ultrasound and conventional ultrasound were performed before surgery or biopsy. A novel deep learning model incorporating multiple regions based on contrast-enhanced ultrasound and grayscale ultrasound was proposed for minimizing the number of false-positive biopsies. The area under the receiver operating characteristic curve (AUC), sensitivity, specificity, and accuracy were compared between the deep learning model and ultrasound experts.The AUC, sensitivity, specificity, and accuracy of the deep learning model in BI-RADS category 4 lesions were 0.910, 91.5%, 90.5%, and 90.8%, respectively, compared with those of ultrasound experts were 0.869, 89.4%, 84.5%, and 85.9%, respectively.The novel deep learning model we proposed had a diagnostic accuracy comparable to that of ultrasound experts, showing the potential to be clinically useful in minimizing the number of false-positive biopsies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Ivia完成签到,获得积分10
1秒前
1秒前
ding应助Newky采纳,获得10
1秒前
2秒前
lllll发布了新的文献求助10
3秒前
博ge发布了新的文献求助10
4秒前
4秒前
YJJ发布了新的文献求助10
5秒前
小当家完成签到,获得积分10
7秒前
7秒前
10秒前
11秒前
12秒前
joy发布了新的文献求助30
12秒前
lvzhechen完成签到,获得积分10
14秒前
M1982发布了新的文献求助10
15秒前
12314发布了新的文献求助10
16秒前
16秒前
甜崽发布了新的文献求助10
16秒前
17秒前
17秒前
思源应助科研通管家采纳,获得10
18秒前
赘婿应助科研通管家采纳,获得10
18秒前
dong应助科研通管家采纳,获得60
18秒前
英姑应助科研通管家采纳,获得10
18秒前
慕青应助科研通管家采纳,获得10
18秒前
18秒前
18秒前
18秒前
18秒前
LANER完成签到 ,获得积分10
18秒前
20秒前
搜集达人应助M1982采纳,获得10
20秒前
23秒前
小辣椒发布了新的文献求助10
23秒前
雨纷纷发布了新的文献求助10
24秒前
wenxian完成签到,获得积分10
24秒前
24秒前
大个应助Anquan采纳,获得10
26秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
The Moiseyev Dance Company Tours America: "Wholesome" Comfort during a Cold War 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3980251
求助须知:如何正确求助?哪些是违规求助? 3524205
关于积分的说明 11220347
捐赠科研通 3261655
什么是DOI,文献DOI怎么找? 1800851
邀请新用户注册赠送积分活动 879332
科研通“疑难数据库(出版商)”最低求助积分说明 807234