佩多:嘘
材料科学
再生(生物学)
明胶
组织工程
脚手架
生物医学工程
导电聚合物
生物相容性材料
粘附
聚合物
纳米技术
化学
复合材料
细胞生物学
生物
医学
生物化学
作者
Franco Furlani,Elisabetta Campodoni,Nicola Sangiorgi,Monica Montesi,Alessandra Sanson,Monica Sandri,Silvia Panseri
标识
DOI:10.1016/j.ijbiomac.2022.10.122
摘要
Electroconductive biomaterials have been emerged to support the recovery of the degenerated electrically conductive tissues, especially the cardiac ones after myocardial infarction. This work describes the development of electroconductive scaffolds for cardiac tissue regeneration by using a biocompatible and conductive polymer – i.e. poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) – combined with a biomimetic polymer network of gelatin. Our approach involves the use of dehydrothermal (DHT) treatment in vacuum conditions to fabricate suitably stable scaffolds without using any additional crosslinking agent. The resulting scaffolds mimic the Young modulus – an essential mechanical performance – of native cardiac tissue and are endowed with a well-interconnected porosity coupled with a good swelling ability and stability in physiological conditions. Additionally, the presence of PEDOT:PSS is able to enhance the electroconductivity of resulting materials. All the scaffolds are non-cytotoxic towards H9C2 cardiomyoblasts and the presence of PEDOT:PSS enhances cell adhesion – especially at early timeframes, an essential condition for a successful outcome after the implantation – proliferation, and spreading on scaffolds. Considering the permissive interaction of scaffolds with cardiomyoblasts, the present biomimetic and electroconductive scaffolds display potential applications as implantable biomaterials for regeneration of electroconductive tissues, especially cardiac tissue, and as a promising 3D tissue model for in vitro biomolecules screening.
科研通智能强力驱动
Strongly Powered by AbleSci AI