化学
胆汁酸
内科学
内分泌学
生物化学
生物
医学
作者
Sujie Sun,Xue Li,Li Zhang,Zilin Zhong,Chao Chen,Yuhua Zuo,Yu Chen,Hongmei Hu,Fasheng Liu,Guanghua Xiong,Huiqiang Lu,Jianjun Chen,Jiayin Dai
标识
DOI:10.1016/j.scitotenv.2022.160087
摘要
Hexafluoropropylene oxide trimer acid (HFPO-TA), a novel alternative to perfluorooctanoic acid (PFOA), has emerged as a potential environmental pollutant. Here, to investigate the toxic effects of HFPO-TA on liver and biliary system development, zebrafish embryos were exposed to 0, 50, 100, or 200 mg/L HFPO-TA from 6 to 120 h post-fertilization (hpf). Results showed that the 50 % lethal concentration (LC50) of HFPO-TA was 231 mg/L at 120 hpf, lower than that of PFOA. HFPO-TA exposure decreased embryonic hatching, survival, and body length. Furthermore, HFPO-TA exerted higher toxicity at the specification stage than during the differentiation and maturation stages, leading to small-sized livers in Tg(fabp10a: DsRed) transgenic larvae and histopathological changes. Significant decreases in the mRNA expression of genes related to liver formation were observed. Alanine transaminase (ALT), aspartate aminotransferase (AST), total bilirubin (TBIL), and direct bilirubin (DBIL) levels were significantly increased. HFPO-TA decreased total cholesterol (TCHO) and triglyceride (TG) activities, disturbed lipid metabolism through the peroxisome proliferator-activated receptor (PPAR) pathway, and induced an inflammatory response. Furthermore, HFPO-TA inhibited intrahepatic biliary development in Tg(Tp1:eGFP) transgenic larvae and interfered with transcription of genes associated with biliary duct development. HFPO-TA reduced bile acid synthesis but increased bile acid transport, resulting in disruption of bile acid metabolism. Therefore, HFPO-TA influenced embryonic liver and biliary system morphogenesis, caused liver injury, and may be an unsafe alternative for PFOA.
科研通智能强力驱动
Strongly Powered by AbleSci AI