Discordance in lumbar bone mineral density measurements by quantitative computed tomography and dual-energy X-ray absorptiometry in postmenopausal women: a prospective comparative study

医学 定量计算机断层扫描 骨质疏松症 骨矿物 腰椎 放射科 双重能量 骨密度 双能X射线吸收法 腰椎 核医学 内科学
作者
Wentao Lin,Chaoqin He,Faqin Xie,Tao Chen,Guanghao Zheng,Houjie Yin,Haixiong Chen,Zhiyun Wang
出处
期刊:The Spine Journal [Elsevier]
卷期号:23 (2): 295-304 被引量:18
标识
DOI:10.1016/j.spinee.2022.10.014
摘要

Level-specific lumbar bone mineral density (BMD) evaluation of a single vertebral body can provide useful surgical planning and osteoporosis management information. Previous comparative studies have primarily focused on detecting spinal osteoporosis but not at specific levels.To compare the detection rate of lumbar osteoporosis between quantitative computed tomography (QCT) and dual-energy X-ray absorptiometry (DXA); to explore and analyze the distribution models of QCT-derived BMD and DXA T-score at the specific levels; and to evaluate the diagnostic accuracy of level-specific BMD thresholds for the prediction of osteoporotic vertebral compression fracture (OVCF) in postmenopausal women.A comparative analysis of prospectively collected data comparing QCT-derived BMD with DXA T-score.A total of 296 postmenopausal women who were referred to the spine service of a single academic institution were enrolled.QCT-derived BMD and DXA T-score at specific levels, with or without osteoporotic vertebral compression fracture.Postmenopausal women who underwent QCT and DXA within a week of admission from May 2019 to June 2022 were enrolled. The diagnostic criteria for osteoporosis recommended by the World Health Organization and the American College of Radiology were used for lumbar osteoporotic diagnosis. To evaluate differences in lumbar BMD measurements at specific levels, a threshold of T score=-2.5 and QCT-derived BMD = 80 mg/cm3 were used to categorize level-specific lumbar BMD into low and high BMD. Disagreements in BMD categorization between DXA and QCT were classified as a minor or major discordance based on the definition by Woodson. Data between QCT and DXA were visualized in a stacked bar plot and analyzed. Correlations between DXA and QCT at the specific levels were evaluated using Pearson's linear correlation and scatter plots. Curve fitting of BMD distribution, receiver operating characteristic (ROC) and area under the curve (AUC) for each single vertebral level was performed.Of the 296 patients, QCT diagnosed 61.1% as osteoporosis, 30.4% as osteopenia and 8.4% as normal. For those screened with DXA, 54.1% of the patients had osteoporosis, 29.4% had osteopenia and 16.6% had normal BMD. Diagnoses were concordant for 194 (65.5%) patients. Of the other 102 discordant patients, 5 (1.7%) were major and 97 (32.8%) were minor. Significant correlations in level-specific BMD between DXA and QCT were observed (p<.001), with Pearson's correlation coefficients ranging from 0.662 to 0.728. The correlation strength was in the order of L1 > L2 > L3 > L4. The low BMD detection rate for QCT was significantly higher than that for DXA at the L3 and L4 levels (65% vs. 47.9% and 68.1% vs 43.7, respectively, p<.001). Patients with OVCF showed significantly lower QCT-derived BMD (47.2 mg/cm3 vs. 83.2 mg/cm3, p<.001) and T-score (-3.39 vs. -1.98, p<.001) than those without OVCF. Among these patients, 82.8% (101/122) were diagnosed with osteoporosis by QCT measurement, while only 74.6% (91/122) were diagnosed by DXA. For discrimination between patients with and without OVCF, QCT-derived BMD showed better diagnosed performance (AUC range from 0.769 to 0.801) than DXA T-score (AUC range from 0.696 to 0.753).QCT provided a more accurate evaluation of lumbar osteoporosis than DXA. The QCT-derived BMD measurements at a specific lumbar level have a high diagnostic performance for OVCF.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
13679165979发布了新的文献求助10
1秒前
13679165979发布了新的文献求助10
1秒前
13679165979发布了新的文献求助10
1秒前
13679165979发布了新的文献求助10
1秒前
13679165979发布了新的文献求助10
1秒前
1秒前
Su发布了新的文献求助10
1秒前
1秒前
淡定的思松应助呆萌士晋采纳,获得10
1秒前
2秒前
3秒前
dilli完成签到 ,获得积分10
3秒前
cwy发布了新的文献求助10
5秒前
wz发布了新的文献求助10
5秒前
balzacsun发布了新的文献求助10
7秒前
JamesPei应助星星采纳,获得10
7秒前
8秒前
8秒前
laodie完成签到,获得积分10
9秒前
彭于晏应助ipeakkka采纳,获得10
9秒前
9秒前
敏感的芷发布了新的文献求助10
9秒前
susan发布了新的文献求助10
9秒前
10秒前
李爱国应助轻松的贞采纳,获得10
10秒前
wz完成签到,获得积分10
11秒前
子川完成签到 ,获得积分10
11秒前
怕孤独的鹭洋完成签到,获得积分10
11秒前
12秒前
耍酷的夏云完成签到,获得积分10
12秒前
laodie发布了新的文献求助10
13秒前
13秒前
小达完成签到,获得积分10
13秒前
nenoaowu发布了新的文献求助10
13秒前
文章要有性价比完成签到,获得积分10
14秒前
俏皮半烟完成签到,获得积分10
14秒前
Aki发布了新的文献求助10
14秒前
111完成签到,获得积分10
16秒前
耗尽完成签到,获得积分10
16秒前
烂漫驳发布了新的文献求助10
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824