VIBUS: Data-efficient 3D scene parsing with VIewpoint Bottleneck and Uncertainty-Spectrum modeling

瓶颈 解析 计算机科学 光谱(功能分析) 人工智能 数据挖掘 计算机视觉 量子力学 物理 嵌入式系统
作者
Beiwen Tian,Liyi Luo,Hao Zhao,Guyue Zhou
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:194: 302-318 被引量:9
标识
DOI:10.1016/j.isprsjprs.2022.10.013
摘要

Recently, 3D scenes parsing with deep learning approaches has been a heating topic. However, current methods with fully-supervised models require manually annotated point-wise supervision which is extremely user-unfriendly and time-consuming to obtain. As such, training 3D scene parsing models with sparse supervision is an intriguing alternative. We term this task as data-efficient 3D scene parsing and propose an effective two-stage framework named VIBUS to resolve it by exploiting the enormous unlabeled points. In the first stage, we perform self-supervised representation learning on unlabeled points with the proposed Viewpoint Bottleneck loss function. The loss function is derived from an information bottleneck objective imposed on scenes under different viewpoints, making the process of representation learning free of degradation and sampling. In the second stage, pseudo labels are harvested from the sparse labels based on uncertainty-spectrum modeling. By combining data-driven uncertainty measures and 3D mesh spectrum measures (derived from normal directions and geodesic distances), a robust local affinity metric is obtained. Finite gamma/beta mixture models are used to decompose category-wise distributions of these measures, leading to automatic selection of thresholds. We evaluate VIBUS on the public benchmark ScanNet and achieve state-of-the-art results on both validation set and online test server. Ablation studies show that both Viewpoint Bottleneck and uncertainty-spectrum modeling bring significant improvements. Codes and models are publicly available at https://github.com/AIR-DISCOVER/VIBUS.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Crisp发布了新的文献求助10
刚刚
刚刚
刚刚
lanmin发布了新的文献求助10
刚刚
高玉峰发布了新的文献求助10
1秒前
nini应助HJJHJH采纳,获得10
1秒前
2秒前
2秒前
归尘发布了新的文献求助10
2秒前
hi_traffic发布了新的文献求助10
2秒前
3秒前
4秒前
Dongjie发布了新的文献求助10
4秒前
4秒前
4秒前
土豆发布了新的文献求助10
4秒前
开心完成签到,获得积分10
5秒前
5秒前
潇洒的冰烟完成签到,获得积分10
5秒前
5秒前
科研通AI6应助Xu采纳,获得10
5秒前
5秒前
慕青应助rui采纳,获得10
6秒前
虎皮狗椒发布了新的文献求助10
6秒前
万能图书馆应助gao采纳,获得10
7秒前
7秒前
romeo发布了新的文献求助30
8秒前
janice发布了新的文献求助10
8秒前
严珍珍完成签到 ,获得积分10
8秒前
薄荷味完成签到,获得积分10
9秒前
脑洞疼应助伊洛采纳,获得10
9秒前
10秒前
无极微光应助维嘉采纳,获得20
10秒前
sunshine发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
11秒前
田様应助abb先生采纳,获得10
11秒前
积木123完成签到,获得积分10
11秒前
BowieHuang应助VDC采纳,获得10
12秒前
科研通AI6应助高玉峰采纳,获得10
15秒前
romeo发布了新的文献求助10
15秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5615168
求助须知:如何正确求助?哪些是违规求助? 4700058
关于积分的说明 14906318
捐赠科研通 4741317
什么是DOI,文献DOI怎么找? 2547956
邀请新用户注册赠送积分活动 1511725
关于科研通互助平台的介绍 1473774