VIBUS: Data-efficient 3D scene parsing with VIewpoint Bottleneck and Uncertainty-Spectrum modeling

瓶颈 解析 计算机科学 光谱(功能分析) 人工智能 数据挖掘 计算机视觉 嵌入式系统 物理 量子力学
作者
Beiwen Tian,Liyi Luo,Hao Zhao,Guyue Zhou
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:194: 302-318 被引量:9
标识
DOI:10.1016/j.isprsjprs.2022.10.013
摘要

Recently, 3D scenes parsing with deep learning approaches has been a heating topic. However, current methods with fully-supervised models require manually annotated point-wise supervision which is extremely user-unfriendly and time-consuming to obtain. As such, training 3D scene parsing models with sparse supervision is an intriguing alternative. We term this task as data-efficient 3D scene parsing and propose an effective two-stage framework named VIBUS to resolve it by exploiting the enormous unlabeled points. In the first stage, we perform self-supervised representation learning on unlabeled points with the proposed Viewpoint Bottleneck loss function. The loss function is derived from an information bottleneck objective imposed on scenes under different viewpoints, making the process of representation learning free of degradation and sampling. In the second stage, pseudo labels are harvested from the sparse labels based on uncertainty-spectrum modeling. By combining data-driven uncertainty measures and 3D mesh spectrum measures (derived from normal directions and geodesic distances), a robust local affinity metric is obtained. Finite gamma/beta mixture models are used to decompose category-wise distributions of these measures, leading to automatic selection of thresholds. We evaluate VIBUS on the public benchmark ScanNet and achieve state-of-the-art results on both validation set and online test server. Ablation studies show that both Viewpoint Bottleneck and uncertainty-spectrum modeling bring significant improvements. Codes and models are publicly available at https://github.com/AIR-DISCOVER/VIBUS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星辰大海应助顺利数据线采纳,获得10
1秒前
送我五篇Sci完成签到,获得积分10
2秒前
科研通AI2S应助不如吃茶去采纳,获得10
2秒前
zzz完成签到 ,获得积分10
4秒前
科研通AI2S应助LELE采纳,获得10
5秒前
asd发布了新的文献求助10
5秒前
6秒前
7秒前
7秒前
7秒前
平常的德天完成签到 ,获得积分10
8秒前
aaaaa发布了新的文献求助10
8秒前
迢迢笙箫应助宝贝采纳,获得10
10秒前
12秒前
JERRI发布了新的文献求助10
12秒前
yunidesuuu发布了新的文献求助10
12秒前
领导范儿应助柳易槐采纳,获得10
12秒前
Akim应助努力中的小鹿采纳,获得10
12秒前
zhaoxiao完成签到 ,获得积分10
12秒前
善学以致用应助科研小白采纳,获得10
13秒前
13秒前
13秒前
呼呼呼发布了新的文献求助10
14秒前
15秒前
15秒前
16秒前
Leex完成签到,获得积分10
17秒前
lucfer完成签到 ,获得积分10
17秒前
18秒前
aixue发布了新的文献求助10
19秒前
19秒前
嘿嘿嘿完成签到,获得积分10
19秒前
spurs17发布了新的文献求助10
21秒前
Leex发布了新的文献求助10
23秒前
chercher完成签到 ,获得积分10
23秒前
尽力完成签到,获得积分10
23秒前
23秒前
顺利琦发布了新的文献求助10
24秒前
25秒前
李健应助liciky采纳,获得10
25秒前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142116
求助须知:如何正确求助?哪些是违规求助? 2793064
关于积分的说明 7805155
捐赠科研通 2449387
什么是DOI,文献DOI怎么找? 1303185
科研通“疑难数据库(出版商)”最低求助积分说明 626807
版权声明 601291