Efficient object detection method based on aerial optical sensors for remote sensing

计算机科学 人工智能 计算机视觉 目标检测 块(置换群论) 架空(工程) 模式识别(心理学) 数学 几何学 操作系统
作者
Qiuhao Zhang,Jiaming Tang,Haoze Zheng,Chunyu Lin
出处
期刊:Displays [Elsevier]
卷期号:75: 102328-102328 被引量:6
标识
DOI:10.1016/j.displa.2022.102328
摘要

Object detection technology for images generated by optical sensors is of great significance in areas such as national defense security, disaster prediction, and smart city construction. Aiming at the problems of small target size, arbitrary target direction, and complex background in aerial image object detection using optical sensors. By using the images captured by a wild range of optical sensors such as CCD(Charge Coupled Device) and SAR(Synthetic Aperture Radar), we propose a more efficient rotating frame object detection algorithm that introduces the MCAB (Multi-branch Convolutional Attention Block) that can process these same types of images taken by the aerial platform using light sensors. First, we construct the module by adding identity, residual branch, and CBAM (Convolutional Block Attention Module) structure to the traditional convolution layer and the activation function to substitute the simple conv module in the network. Secondly, we introduce the Transformer layer at the end of the backbone network to enhance the global perception of the model with low overhead, realize the relationship is modeling between the target and the scene content, and reduce the amount of calculation. We improve the structure of the neck layer by BiFPN (Bidirectional Feature Pyramid Network) to speed up network operation, and CBAM is added after C3 to highlight important characteristic information. Our improved YOLOv5 algorithm is tested on the self-made rotating small target aerial data set. Compared with the original algorithm, our model's mean Average Precision (mAP) is improved by 1.8 percentage points, and the accuracy and recall are also enhanced by 0.46 and 0.34 percentage points.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
snowdrift发布了新的文献求助10
刚刚
爆米花应助尊敬的钥匙采纳,获得10
刚刚
China完成签到,获得积分10
刚刚
Ll发布了新的文献求助10
刚刚
1秒前
李小胖完成签到,获得积分10
1秒前
刘鹏宇发布了新的文献求助10
2秒前
2秒前
2秒前
SXM发布了新的文献求助10
3秒前
duan完成签到,获得积分20
3秒前
MrCoolWu完成签到,获得积分10
3秒前
星辰大海应助科研通管家采纳,获得10
4秒前
香蕉觅云应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
4秒前
CipherSage应助科研通管家采纳,获得10
4秒前
4秒前
Leif应助科研通管家采纳,获得20
4秒前
ding应助科研通管家采纳,获得20
4秒前
NexusExplorer应助科研通管家采纳,获得10
5秒前
Owen应助科研通管家采纳,获得10
5秒前
上官若男应助科研通管家采纳,获得10
5秒前
prosperp应助科研通管家采纳,获得10
5秒前
zhang完成签到,获得积分10
5秒前
烟花应助科研通管家采纳,获得10
5秒前
科研通AI5应助liuguohua126采纳,获得10
5秒前
Hello应助科研通管家采纳,获得10
5秒前
小蘑菇应助科研通管家采纳,获得10
5秒前
5秒前
科目三应助科研通管家采纳,获得10
5秒前
Ava应助科研通管家采纳,获得10
5秒前
小星发布了新的文献求助10
5秒前
6秒前
6秒前
深情安青应助小可采纳,获得10
6秒前
7秒前
高大代容发布了新的文献求助10
7秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740