亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Efficient object detection method based on aerial optical sensors for remote sensing

计算机科学 人工智能 计算机视觉 目标检测 块(置换群论) 架空(工程) 模式识别(心理学) 数学 几何学 操作系统
作者
Qiuhao Zhang,Jiaming Tang,Haoze Zheng,Chunyu Lin
出处
期刊:Displays [Elsevier]
卷期号:75: 102328-102328 被引量:15
标识
DOI:10.1016/j.displa.2022.102328
摘要

Object detection technology for images generated by optical sensors is of great significance in areas such as national defense security, disaster prediction, and smart city construction. Aiming at the problems of small target size, arbitrary target direction, and complex background in aerial image object detection using optical sensors. By using the images captured by a wild range of optical sensors such as CCD(Charge Coupled Device) and SAR(Synthetic Aperture Radar), we propose a more efficient rotating frame object detection algorithm that introduces the MCAB (Multi-branch Convolutional Attention Block) that can process these same types of images taken by the aerial platform using light sensors. First, we construct the module by adding identity, residual branch, and CBAM (Convolutional Block Attention Module) structure to the traditional convolution layer and the activation function to substitute the simple conv module in the network. Secondly, we introduce the Transformer layer at the end of the backbone network to enhance the global perception of the model with low overhead, realize the relationship is modeling between the target and the scene content, and reduce the amount of calculation. We improve the structure of the neck layer by BiFPN (Bidirectional Feature Pyramid Network) to speed up network operation, and CBAM is added after C3 to highlight important characteristic information. Our improved YOLOv5 algorithm is tested on the self-made rotating small target aerial data set. Compared with the original algorithm, our model's mean Average Precision (mAP) is improved by 1.8 percentage points, and the accuracy and recall are also enhanced by 0.46 and 0.34 percentage points.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
清一完成签到,获得积分10
刚刚
刚刚
1秒前
2秒前
shinn发布了新的文献求助10
2秒前
桐夜完成签到 ,获得积分10
2秒前
dada完成签到,获得积分10
5秒前
Soient发布了新的文献求助10
6秒前
6秒前
shinn发布了新的文献求助10
7秒前
14秒前
14秒前
舒服的觅夏完成签到,获得积分10
18秒前
19秒前
赘婿应助shinn采纳,获得10
27秒前
阿里完成签到,获得积分10
29秒前
1111关注了科研通微信公众号
31秒前
32秒前
动听的涵山完成签到,获得积分10
34秒前
思源应助郴欧尼采纳,获得10
34秒前
耕云钓月发布了新的文献求助10
36秒前
长安宁完成签到 ,获得积分10
37秒前
38秒前
43秒前
赘婿应助耕云钓月采纳,获得10
45秒前
shinn发布了新的文献求助10
46秒前
Ava应助shinn采纳,获得10
51秒前
52秒前
53秒前
1分钟前
shinn发布了新的文献求助10
1分钟前
小智完成签到,获得积分10
1分钟前
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
1分钟前
小智发布了新的文献求助10
1分钟前
耕云钓月发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5772534
求助须知:如何正确求助?哪些是违规求助? 5599698
关于积分的说明 15429759
捐赠科研通 4905497
什么是DOI,文献DOI怎么找? 2639436
邀请新用户注册赠送积分活动 1587360
关于科研通互助平台的介绍 1542247