Evaluation and prediction method of automotive electronic accelerator pedal based on support vector regression

支持向量机 汽车工业 人工神经网络 计算机科学 均方误差 相关系数 汽车电子 模拟 人工智能 机器学习 工程类 统计 数学 航空航天工程
作者
Minxue Wang,Wei Miao,Yudian Tan,Kunpeng Wu,Xue Li,Yili Gu,Liqing Chen
出处
期刊:Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering [SAGE]
卷期号:: 095440702211338-095440702211338
标识
DOI:10.1177/09544070221133875
摘要

In the process of automobile electronic accelerator pedal development, it is a critical and challenging issue to evaluate the rationality and comfort of the design of an automotive electronic accelerator pedal. Many factors influence the comfort of the accelerator pedal, such as the spatial layout, dynamic characteristics, and matching characteristics of the accelerator pedal and vehicle motion. Since comfort evaluation requires a lot of manpower and material resources, this paper proposes a prediction model based on support vector machine regression algorithm (SVR) for comprehensive evaluation of Chinese passenger car pedals. It uses the known evaluation results to predict the unknown evaluated accelerator pedal parameters to achieve a more efficient and accurate assessment of electronic accelerator pedal design. Firstly, the article performs pedal position scans, pedal static, and road tests to give criteria, limitations, and recommended design ranges for pedal operation. Then, the vehicle performance was predicted and evaluated using a support vector machine prediction model and back propagation (BP) neural network prediction model for comparison. The correlation coefficient for the prediction results of the SVR model was 0.9024 with a mean square error was 0.00195. The correlation coefficient for the BP neural network model prediction result was 0.8694 with a mean square error of 0.00582. Finally, the simulation results were analyzed, and the results showed that support vector regression outperformed the neural network in predicting the validity and reliability of pedal design and performance evaluation, and can facilitate automotive pedal design and development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhaozhao完成签到,获得积分10
1秒前
2秒前
scl发布了新的文献求助10
2秒前
2秒前
杜不腾发布了新的文献求助10
2秒前
甜的瓜完成签到,获得积分10
2秒前
Owen应助别闹闹采纳,获得10
3秒前
张必雨完成签到,获得积分10
3秒前
潇湘妃子59完成签到,获得积分10
4秒前
张姣姣完成签到,获得积分10
4秒前
啾啾完成签到,获得积分10
4秒前
ylj1531585955发布了新的文献求助10
5秒前
易吴鱼完成签到 ,获得积分10
5秒前
缓慢洋葱完成签到,获得积分10
6秒前
Jemma完成签到 ,获得积分10
6秒前
ash发布了新的文献求助10
6秒前
培a发布了新的文献求助10
7秒前
cccui完成签到,获得积分10
7秒前
爆米花应助张必雨采纳,获得10
7秒前
淡淡的向雁完成签到,获得积分10
8秒前
季生完成签到,获得积分10
9秒前
10秒前
10秒前
10秒前
小蘑菇应助赵雷采纳,获得10
11秒前
艺术大师完成签到,获得积分10
11秒前
123发布了新的文献求助30
12秒前
小叶子完成签到,获得积分10
12秒前
CipherSage应助詹虔采纳,获得10
12秒前
安生完成签到,获得积分10
12秒前
不戴眼镜的眼镜王蛇完成签到,获得积分10
13秒前
乐乐应助zxh采纳,获得10
13秒前
ws发布了新的文献求助20
13秒前
路易斯关注了科研通微信公众号
14秒前
Cc完成签到,获得积分10
14秒前
liuj完成签到,获得积分10
14秒前
嘻嘻滑呀完成签到 ,获得积分10
14秒前
小蘑菇应助fighting采纳,获得10
15秒前
15秒前
小叶子发布了新的文献求助10
15秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3167791
求助须知:如何正确求助?哪些是违规求助? 2819164
关于积分的说明 7925456
捐赠科研通 2479083
什么是DOI,文献DOI怎么找? 1320632
科研通“疑难数据库(出版商)”最低求助积分说明 632856
版权声明 602443