Evaluation and prediction method of automotive electronic accelerator pedal based on support vector regression

支持向量机 汽车工业 人工神经网络 计算机科学 均方误差 相关系数 汽车电子 模拟 人工智能 机器学习 工程类 统计 数学 航空航天工程
作者
Minxue Wang,Wei Miao,Yudian Tan,Kunpeng Wu,Xue Li,Yili Gu,Liqing Chen
出处
期刊:Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering [SAGE Publishing]
卷期号:: 095440702211338-095440702211338
标识
DOI:10.1177/09544070221133875
摘要

In the process of automobile electronic accelerator pedal development, it is a critical and challenging issue to evaluate the rationality and comfort of the design of an automotive electronic accelerator pedal. Many factors influence the comfort of the accelerator pedal, such as the spatial layout, dynamic characteristics, and matching characteristics of the accelerator pedal and vehicle motion. Since comfort evaluation requires a lot of manpower and material resources, this paper proposes a prediction model based on support vector machine regression algorithm (SVR) for comprehensive evaluation of Chinese passenger car pedals. It uses the known evaluation results to predict the unknown evaluated accelerator pedal parameters to achieve a more efficient and accurate assessment of electronic accelerator pedal design. Firstly, the article performs pedal position scans, pedal static, and road tests to give criteria, limitations, and recommended design ranges for pedal operation. Then, the vehicle performance was predicted and evaluated using a support vector machine prediction model and back propagation (BP) neural network prediction model for comparison. The correlation coefficient for the prediction results of the SVR model was 0.9024 with a mean square error was 0.00195. The correlation coefficient for the BP neural network model prediction result was 0.8694 with a mean square error of 0.00582. Finally, the simulation results were analyzed, and the results showed that support vector regression outperformed the neural network in predicting the validity and reliability of pedal design and performance evaluation, and can facilitate automotive pedal design and development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jessica发布了新的文献求助10
刚刚
鲸落完成签到,获得积分20
1秒前
Moyan4332发布了新的文献求助10
1秒前
寄寄寄寄寄了应助ZYao65采纳,获得10
3秒前
小二郎应助朝暮星河采纳,获得10
4秒前
4秒前
英俊的铭应助激昂的南烟采纳,获得10
5秒前
Nemo97完成签到,获得积分10
5秒前
荒天帝石昊完成签到,获得积分10
5秒前
甜美无剑发布了新的文献求助10
7秒前
gyhuang发布了新的文献求助10
7秒前
风从虎完成签到 ,获得积分10
7秒前
7秒前
小宋发布了新的文献求助10
8秒前
9秒前
Sakura发布了新的文献求助10
9秒前
9秒前
9秒前
xu完成签到,获得积分10
9秒前
10秒前
10秒前
11秒前
dingding完成签到 ,获得积分20
11秒前
脑洞疼应助OldFly采纳,获得10
11秒前
ZJJ完成签到,获得积分10
11秒前
喂喂喂威发布了新的文献求助10
11秒前
14秒前
英俊的铭应助aaaa采纳,获得10
14秒前
泡泡果发布了新的文献求助10
14秒前
14秒前
gyhuang完成签到,获得积分10
14秒前
落后的小猫咪完成签到,获得积分10
15秒前
15秒前
鲸落发布了新的文献求助10
15秒前
坚定寒天完成签到 ,获得积分10
16秒前
17秒前
zzz发布了新的文献求助10
17秒前
朝暮星河发布了新的文献求助10
17秒前
yby完成签到,获得积分10
19秒前
CJZ关闭了CJZ文献求助
19秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Atlas of Interventional Pain Management 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4011501
求助须知:如何正确求助?哪些是违规求助? 3551133
关于积分的说明 11307791
捐赠科研通 3285391
什么是DOI,文献DOI怎么找? 1811040
邀请新用户注册赠送积分活动 886767
科研通“疑难数据库(出版商)”最低求助积分说明 811636