Evaluation and prediction method of automotive electronic accelerator pedal based on support vector regression

支持向量机 汽车工业 人工神经网络 计算机科学 均方误差 相关系数 汽车电子 模拟 人工智能 机器学习 工程类 统计 数学 航空航天工程
作者
Minxue Wang,Wei Miao,Yudian Tan,Kunpeng Wu,Xue Li,Yili Gu,Liqing Chen
出处
期刊:Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering [SAGE Publishing]
卷期号:: 095440702211338-095440702211338
标识
DOI:10.1177/09544070221133875
摘要

In the process of automobile electronic accelerator pedal development, it is a critical and challenging issue to evaluate the rationality and comfort of the design of an automotive electronic accelerator pedal. Many factors influence the comfort of the accelerator pedal, such as the spatial layout, dynamic characteristics, and matching characteristics of the accelerator pedal and vehicle motion. Since comfort evaluation requires a lot of manpower and material resources, this paper proposes a prediction model based on support vector machine regression algorithm (SVR) for comprehensive evaluation of Chinese passenger car pedals. It uses the known evaluation results to predict the unknown evaluated accelerator pedal parameters to achieve a more efficient and accurate assessment of electronic accelerator pedal design. Firstly, the article performs pedal position scans, pedal static, and road tests to give criteria, limitations, and recommended design ranges for pedal operation. Then, the vehicle performance was predicted and evaluated using a support vector machine prediction model and back propagation (BP) neural network prediction model for comparison. The correlation coefficient for the prediction results of the SVR model was 0.9024 with a mean square error was 0.00195. The correlation coefficient for the BP neural network model prediction result was 0.8694 with a mean square error of 0.00582. Finally, the simulation results were analyzed, and the results showed that support vector regression outperformed the neural network in predicting the validity and reliability of pedal design and performance evaluation, and can facilitate automotive pedal design and development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天真的铭发布了新的文献求助10
1秒前
匆匆完成签到,获得积分10
1秒前
1秒前
1秒前
科研通AI6应助wang采纳,获得10
1秒前
shilong.yang完成签到,获得积分10
2秒前
Dobrzs发布了新的文献求助10
2秒前
2秒前
所所应助唠叨的又菡采纳,获得10
3秒前
4秒前
ggxhygr发布了新的文献求助10
4秒前
田田田发布了新的文献求助10
5秒前
5秒前
董春伟应助ll采纳,获得10
5秒前
zyf完成签到,获得积分10
6秒前
yuyukeke发布了新的文献求助10
6秒前
孙大大关注了科研通微信公众号
6秒前
米团发布了新的文献求助10
7秒前
7秒前
czqjlu完成签到,获得积分10
7秒前
若非菜孰愿弟完成签到,获得积分10
7秒前
1235完成签到,获得积分10
8秒前
咕噜完成签到 ,获得积分10
8秒前
9秒前
浮游应助Mydddg采纳,获得15
9秒前
Hello应助吸墨采纳,获得10
9秒前
9秒前
lv发布了新的文献求助10
10秒前
10秒前
10秒前
10秒前
10秒前
11秒前
爱笑访文应助张宇琪采纳,获得10
11秒前
Freedom发布了新的文献求助10
12秒前
13秒前
小倪发布了新的文献求助10
13秒前
13秒前
14秒前
琪凯定理发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《微型计算机》杂志2006年增刊 1600
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4960767
求助须知:如何正确求助?哪些是违规求助? 4221237
关于积分的说明 13146027
捐赠科研通 4004962
什么是DOI,文献DOI怎么找? 2191794
邀请新用户注册赠送积分活动 1205889
关于科研通互助平台的介绍 1116970