Evaluation and prediction method of automotive electronic accelerator pedal based on support vector regression

支持向量机 汽车工业 人工神经网络 计算机科学 均方误差 相关系数 汽车电子 模拟 人工智能 机器学习 工程类 统计 数学 航空航天工程
作者
Minxue Wang,Wei Miao,Yudian Tan,Kunpeng Wu,Xue Li,Yili Gu,Liqing Chen
出处
期刊:Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering [SAGE Publishing]
卷期号:: 095440702211338-095440702211338
标识
DOI:10.1177/09544070221133875
摘要

In the process of automobile electronic accelerator pedal development, it is a critical and challenging issue to evaluate the rationality and comfort of the design of an automotive electronic accelerator pedal. Many factors influence the comfort of the accelerator pedal, such as the spatial layout, dynamic characteristics, and matching characteristics of the accelerator pedal and vehicle motion. Since comfort evaluation requires a lot of manpower and material resources, this paper proposes a prediction model based on support vector machine regression algorithm (SVR) for comprehensive evaluation of Chinese passenger car pedals. It uses the known evaluation results to predict the unknown evaluated accelerator pedal parameters to achieve a more efficient and accurate assessment of electronic accelerator pedal design. Firstly, the article performs pedal position scans, pedal static, and road tests to give criteria, limitations, and recommended design ranges for pedal operation. Then, the vehicle performance was predicted and evaluated using a support vector machine prediction model and back propagation (BP) neural network prediction model for comparison. The correlation coefficient for the prediction results of the SVR model was 0.9024 with a mean square error was 0.00195. The correlation coefficient for the BP neural network model prediction result was 0.8694 with a mean square error of 0.00582. Finally, the simulation results were analyzed, and the results showed that support vector regression outperformed the neural network in predicting the validity and reliability of pedal design and performance evaluation, and can facilitate automotive pedal design and development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
心木完成签到 ,获得积分10
刚刚
1秒前
共享精神应助serendipity采纳,获得10
1秒前
John完成签到 ,获得积分10
3秒前
TANG完成签到,获得积分10
3秒前
13223456发布了新的文献求助10
3秒前
kdf发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
5秒前
852应助科研通管家采纳,获得10
5秒前
星辰大海应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
科研通AI5应助科研通管家采纳,获得50
6秒前
爆米花应助科研通管家采纳,获得10
6秒前
丘比特应助科研通管家采纳,获得10
6秒前
浮游应助科研通管家采纳,获得10
6秒前
完美世界应助科研通管家采纳,获得10
6秒前
GPTea应助科研通管家采纳,获得150
6秒前
bkagyin应助科研通管家采纳,获得10
6秒前
加菲丰丰应助科研通管家采纳,获得30
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
Orange应助科研通管家采纳,获得10
6秒前
乐乐应助科研通管家采纳,获得10
6秒前
丘比特应助科研通管家采纳,获得10
6秒前
6秒前
sxkoala应助科研通管家采纳,获得30
6秒前
加菲丰丰应助科研通管家采纳,获得30
6秒前
文艺紫菜应助科研通管家采纳,获得10
6秒前
深情安青应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
我的miemie应助科研通管家采纳,获得20
6秒前
liwanyi0808完成签到,获得积分10
8秒前
大个应助TheFuture采纳,获得10
8秒前
9秒前
sy完成签到,获得积分10
10秒前
013完成签到,获得积分10
10秒前
可爱的函函应助Ahan采纳,获得10
10秒前
叫我学弟发布了新的文献求助10
11秒前
pancake应助王治清采纳,获得30
11秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5133576
求助须知:如何正确求助?哪些是违规求助? 4334702
关于积分的说明 13504381
捐赠科研通 4171698
什么是DOI,文献DOI怎么找? 2287273
邀请新用户注册赠送积分活动 1288197
关于科研通互助平台的介绍 1229045