Building façade element extraction based on multidimensional virtual semantic feature map ensemble learning and hierarchical clustering

计算机科学 聚类分析 人工智能 点云 特征提取 模式识别(心理学) 建筑模型 稳健性(进化) 计算机视觉 模拟 生物化学 基因 化学
作者
Rongchun Zhang,Yongtao He,Liang Cheng,Xuefeng Yi,Guanming Lu,Lan Yang
出处
期刊:International Journal of Applied Earth Observation and Geoinformation 卷期号:114: 103068-103068
标识
DOI:10.1016/j.jag.2022.103068
摘要

Building façade elements are an important foundation for smart cities. As buildings exhibit an array of textures and geometric forms, the process of image acquisition is easily affected, although the robustness of texture in scenes (e.g., dilapidated buildings) is poor, with high point cloud data, and low recognition efficiency; therefore, the accuracy of building element extraction based on a single data source remains limited. In this research, a method for building façade element extraction based on multidimensional virtual semantic feature map ensemble learning and hierarchical clustering is proposed. Point clouds were obtained by multi-view images, and then the multidimensional virtual semantic feature maps, including color, texture, orientation, and curvature semantics, were acquired via reprojection. The multi-semantic feature block pre-segmentation, considering multiple features, was obtained by ensemble learning, and a hierarchical clustering strategy was established for to achieve fine extraction of building façade elements. Experiments were conducted across multiple building types, and the results showed that: 1) The method can use different virtual semantic feature map and clustering strategies to achieve accurate extraction of diverse building façade elements; 2) The method achieved joint learning tasks in both 2D and 3D space; and, 3) The proposed method achieved fine extraction of building elements with pixel accuracy (PA) over 70% in all experiments and mean intersection over union (mIoU) up to 95%, which were better than the image based method. In summary, this method offers a novel, more reliable method for segmenting and extracting building façade elements, which has important theoretical and practical significance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yimiyangguang完成签到 ,获得积分10
9秒前
HHEHK完成签到 ,获得积分10
13秒前
CCsci完成签到 ,获得积分10
18秒前
ranj完成签到,获得积分10
20秒前
拼搏问薇完成签到 ,获得积分10
29秒前
1002SHIB完成签到,获得积分10
29秒前
nihaolaojiu完成签到,获得积分10
30秒前
隐形曼青应助科研通管家采纳,获得10
30秒前
麦田麦兜完成签到,获得积分10
30秒前
sheetung完成签到,获得积分10
30秒前
郭郭要努力ya完成签到 ,获得积分10
30秒前
啦啦啦完成签到 ,获得积分10
48秒前
K先生完成签到 ,获得积分10
52秒前
53秒前
搞怪静竹发布了新的文献求助10
59秒前
您好刘皇叔完成签到,获得积分0
1分钟前
sweet雪儿妞妞完成签到 ,获得积分10
1分钟前
暖羊羊Y完成签到 ,获得积分10
1分钟前
文静的翠彤完成签到 ,获得积分10
1分钟前
搞怪静竹完成签到 ,获得积分10
1分钟前
zjq完成签到 ,获得积分10
1分钟前
1分钟前
HUFREE完成签到,获得积分20
1分钟前
HUFREE发布了新的文献求助10
1分钟前
酷酷小子完成签到 ,获得积分10
1分钟前
ceploup完成签到,获得积分10
1分钟前
风-FBDD完成签到,获得积分10
1分钟前
1分钟前
一株多肉完成签到 ,获得积分10
1分钟前
猪仔5号完成签到 ,获得积分10
1分钟前
ROMANTIC完成签到 ,获得积分10
1分钟前
如意枫叶发布了新的文献求助10
1分钟前
星辰大海应助远山淡影_cy采纳,获得10
2分钟前
纯真的梦竹完成签到,获得积分10
2分钟前
小田完成签到 ,获得积分10
2分钟前
zhuosht完成签到 ,获得积分10
2分钟前
周运来完成签到,获得积分10
2分钟前
飞飞完成签到,获得积分10
2分钟前
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3990835
求助须知:如何正确求助?哪些是违规求助? 3532241
关于积分的说明 11256614
捐赠科研通 3271100
什么是DOI,文献DOI怎么找? 1805229
邀请新用户注册赠送积分活动 882302
科研通“疑难数据库(出版商)”最低求助积分说明 809236