Building façade element extraction based on multidimensional virtual semantic feature map ensemble learning and hierarchical clustering

计算机科学 聚类分析 人工智能 点云 特征提取 模式识别(心理学) 建筑模型 稳健性(进化) 计算机视觉 模拟 生物化学 基因 化学
作者
Rongchun Zhang,Yongtao He,Liang Cheng,Xuefeng Yi,Guanming Lu,Lan Yang
出处
期刊:International Journal of Applied Earth Observation and Geoinformation 卷期号:114: 103068-103068
标识
DOI:10.1016/j.jag.2022.103068
摘要

Building façade elements are an important foundation for smart cities. As buildings exhibit an array of textures and geometric forms, the process of image acquisition is easily affected, although the robustness of texture in scenes (e.g., dilapidated buildings) is poor, with high point cloud data, and low recognition efficiency; therefore, the accuracy of building element extraction based on a single data source remains limited. In this research, a method for building façade element extraction based on multidimensional virtual semantic feature map ensemble learning and hierarchical clustering is proposed. Point clouds were obtained by multi-view images, and then the multidimensional virtual semantic feature maps, including color, texture, orientation, and curvature semantics, were acquired via reprojection. The multi-semantic feature block pre-segmentation, considering multiple features, was obtained by ensemble learning, and a hierarchical clustering strategy was established for to achieve fine extraction of building façade elements. Experiments were conducted across multiple building types, and the results showed that: 1) The method can use different virtual semantic feature map and clustering strategies to achieve accurate extraction of diverse building façade elements; 2) The method achieved joint learning tasks in both 2D and 3D space; and, 3) The proposed method achieved fine extraction of building elements with pixel accuracy (PA) over 70% in all experiments and mean intersection over union (mIoU) up to 95%, which were better than the image based method. In summary, this method offers a novel, more reliable method for segmenting and extracting building façade elements, which has important theoretical and practical significance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
梁云发布了新的文献求助10
刚刚
小二郎应助甜菜采纳,获得10
1秒前
Akim应助腼腆的小女孩采纳,获得10
1秒前
Orange应助戴昕东采纳,获得10
1秒前
1秒前
2秒前
研友_VZG7GZ应助沐兮采纳,获得10
2秒前
量子星尘发布了新的文献求助10
4秒前
xiaohu完成签到,获得积分10
4秒前
5秒前
6秒前
liuliu发布了新的文献求助10
6秒前
yyy1234567完成签到 ,获得积分10
7秒前
cc发布了新的文献求助10
8秒前
dopamine完成签到,获得积分10
9秒前
Phe发布了新的文献求助10
9秒前
10秒前
英吉利25发布了新的文献求助10
11秒前
11秒前
善良依瑶发布了新的文献求助50
12秒前
13秒前
蓓蓓0303发布了新的文献求助10
14秒前
15秒前
15秒前
天天发布了新的文献求助10
15秒前
体贴觅云完成签到,获得积分10
16秒前
归诫发布了新的文献求助10
17秒前
张广雪发布了新的文献求助10
19秒前
长情的语风完成签到 ,获得积分10
20秒前
20秒前
小马同学完成签到,获得积分10
21秒前
鲫鱼发布了新的文献求助10
21秒前
ldy完成签到 ,获得积分10
22秒前
DrW完成签到,获得积分0
23秒前
明眸发布了新的文献求助10
23秒前
量子星尘发布了新的文献求助10
23秒前
梁云完成签到,获得积分10
25秒前
乐乐应助Phe采纳,获得10
25秒前
Ava应助小学霸搞科研采纳,获得10
25秒前
limi完成签到 ,获得积分10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
Alloy Phase Diagrams 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5419574
求助须知:如何正确求助?哪些是违规求助? 4534806
关于积分的说明 14147001
捐赠科研通 4451480
什么是DOI,文献DOI怎么找? 2441759
邀请新用户注册赠送积分活动 1433376
关于科研通互助平台的介绍 1410616