亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Building façade element extraction based on multidimensional virtual semantic feature map ensemble learning and hierarchical clustering

计算机科学 聚类分析 人工智能 点云 特征提取 模式识别(心理学) 建筑模型 稳健性(进化) 计算机视觉 模拟 生物化学 基因 化学
作者
Rongchun Zhang,Yongtao He,Liang Cheng,Xuefeng Yi,Guanming Lu,Lan Yang
出处
期刊:International Journal of Applied Earth Observation and Geoinformation 卷期号:114: 103068-103068
标识
DOI:10.1016/j.jag.2022.103068
摘要

Building façade elements are an important foundation for smart cities. As buildings exhibit an array of textures and geometric forms, the process of image acquisition is easily affected, although the robustness of texture in scenes (e.g., dilapidated buildings) is poor, with high point cloud data, and low recognition efficiency; therefore, the accuracy of building element extraction based on a single data source remains limited. In this research, a method for building façade element extraction based on multidimensional virtual semantic feature map ensemble learning and hierarchical clustering is proposed. Point clouds were obtained by multi-view images, and then the multidimensional virtual semantic feature maps, including color, texture, orientation, and curvature semantics, were acquired via reprojection. The multi-semantic feature block pre-segmentation, considering multiple features, was obtained by ensemble learning, and a hierarchical clustering strategy was established for to achieve fine extraction of building façade elements. Experiments were conducted across multiple building types, and the results showed that: 1) The method can use different virtual semantic feature map and clustering strategies to achieve accurate extraction of diverse building façade elements; 2) The method achieved joint learning tasks in both 2D and 3D space; and, 3) The proposed method achieved fine extraction of building elements with pixel accuracy (PA) over 70% in all experiments and mean intersection over union (mIoU) up to 95%, which were better than the image based method. In summary, this method offers a novel, more reliable method for segmenting and extracting building façade elements, which has important theoretical and practical significance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
tamo完成签到,获得积分10
2秒前
4秒前
5秒前
7秒前
潮鸣完成签到 ,获得积分10
8秒前
NiceSunnyDay完成签到 ,获得积分10
10秒前
哈哈完成签到,获得积分10
11秒前
wzccc发布了新的文献求助10
12秒前
14秒前
3sigma发布了新的文献求助10
19秒前
20秒前
21秒前
香樟沐雪发布了新的文献求助10
26秒前
脑洞疼应助3sigma采纳,获得10
28秒前
昏睡的芒果完成签到,获得积分10
29秒前
潇洒莞完成签到 ,获得积分10
29秒前
30秒前
传奇3应助疯狂的凝云采纳,获得10
33秒前
深情安青应助香樟沐雪采纳,获得10
37秒前
大模型应助saywhy采纳,获得10
39秒前
3sigma完成签到,获得积分10
40秒前
浮游应助科研通管家采纳,获得10
41秒前
吴彦祖应助科研通管家采纳,获得10
41秒前
浮游应助科研通管家采纳,获得10
41秒前
浮游应助科研通管家采纳,获得10
41秒前
浮游应助科研通管家采纳,获得10
41秒前
充电宝应助科研通管家采纳,获得10
41秒前
41秒前
科研通AI6应助科研通管家采纳,获得10
41秒前
吴彦祖应助科研通管家采纳,获得10
41秒前
51秒前
jjyy发布了新的文献求助10
55秒前
58秒前
1分钟前
1分钟前
一个冷漠无情的人完成签到,获得积分10
1分钟前
唠叨的妙梦完成签到,获得积分10
1分钟前
hx完成签到 ,获得积分10
1分钟前
leec完成签到,获得积分10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mentoring for Wellbeing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1061
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5498185
求助须知:如何正确求助?哪些是违规求助? 4595509
关于积分的说明 14449204
捐赠科研通 4528187
什么是DOI,文献DOI怎么找? 2481411
邀请新用户注册赠送积分活动 1465554
关于科研通互助平台的介绍 1438297