已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Building façade element extraction based on multidimensional virtual semantic feature map ensemble learning and hierarchical clustering

计算机科学 聚类分析 人工智能 点云 特征提取 模式识别(心理学) 建筑模型 稳健性(进化) 计算机视觉 模拟 生物化学 基因 化学
作者
Rongchun Zhang,Yongtao He,Liang Cheng,Xuefeng Yi,Guanming Lu,Lan Yang
出处
期刊:International Journal of Applied Earth Observation and Geoinformation 卷期号:114: 103068-103068
标识
DOI:10.1016/j.jag.2022.103068
摘要

Building façade elements are an important foundation for smart cities. As buildings exhibit an array of textures and geometric forms, the process of image acquisition is easily affected, although the robustness of texture in scenes (e.g., dilapidated buildings) is poor, with high point cloud data, and low recognition efficiency; therefore, the accuracy of building element extraction based on a single data source remains limited. In this research, a method for building façade element extraction based on multidimensional virtual semantic feature map ensemble learning and hierarchical clustering is proposed. Point clouds were obtained by multi-view images, and then the multidimensional virtual semantic feature maps, including color, texture, orientation, and curvature semantics, were acquired via reprojection. The multi-semantic feature block pre-segmentation, considering multiple features, was obtained by ensemble learning, and a hierarchical clustering strategy was established for to achieve fine extraction of building façade elements. Experiments were conducted across multiple building types, and the results showed that: 1) The method can use different virtual semantic feature map and clustering strategies to achieve accurate extraction of diverse building façade elements; 2) The method achieved joint learning tasks in both 2D and 3D space; and, 3) The proposed method achieved fine extraction of building elements with pixel accuracy (PA) over 70% in all experiments and mean intersection over union (mIoU) up to 95%, which were better than the image based method. In summary, this method offers a novel, more reliable method for segmenting and extracting building façade elements, which has important theoretical and practical significance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健应助感动凡雁采纳,获得10
1秒前
2秒前
2秒前
2秒前
小马甲应助王一一采纳,获得20
3秒前
3秒前
外向雁梅发布了新的文献求助10
3秒前
自信尔竹完成签到,获得积分10
5秒前
别看了完成签到,获得积分10
5秒前
年年发布了新的文献求助10
7秒前
che发布了新的文献求助10
8秒前
Jessica发布了新的文献求助10
9秒前
Lucas应助啊啊啊采纳,获得10
10秒前
我爱吃糯米团子完成签到,获得积分10
10秒前
充电宝应助ernest采纳,获得30
11秒前
rex完成签到,获得积分10
11秒前
12秒前
keep完成签到 ,获得积分10
12秒前
13秒前
左贵辉完成签到,获得积分20
14秒前
大个应助年年采纳,获得10
15秒前
harry完成签到,获得积分10
15秒前
heal发布了新的文献求助10
16秒前
16秒前
17秒前
ernest发布了新的文献求助30
17秒前
18秒前
harry发布了新的文献求助10
18秒前
领导范儿应助lee采纳,获得10
18秒前
18秒前
细腻的谷丝完成签到 ,获得积分20
18秒前
21秒前
22秒前
啊啊啊发布了新的文献求助10
22秒前
极速小鱼发布了新的文献求助10
22秒前
啦啦啦啦发布了新的文献求助10
22秒前
Orange应助灵巧电灯胆采纳,获得10
23秒前
田様应助悲凉的菠萝采纳,获得10
24秒前
zrn完成签到 ,获得积分10
24秒前
123发布了新的文献求助10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5663813
求助须知:如何正确求助?哪些是违规求助? 4853007
关于积分的说明 15105807
捐赠科研通 4822042
什么是DOI,文献DOI怎么找? 2581165
邀请新用户注册赠送积分活动 1535358
关于科研通互助平台的介绍 1493722