Building façade element extraction based on multidimensional virtual semantic feature map ensemble learning and hierarchical clustering

计算机科学 聚类分析 人工智能 点云 特征提取 模式识别(心理学) 建筑模型 稳健性(进化) 计算机视觉 模拟 生物化学 基因 化学
作者
Rongchun Zhang,Yongtao He,Liang Cheng,Xuefeng Yi,Guanming Lu,Lan Yang
出处
期刊:International Journal of Applied Earth Observation and Geoinformation 卷期号:114: 103068-103068
标识
DOI:10.1016/j.jag.2022.103068
摘要

Building façade elements are an important foundation for smart cities. As buildings exhibit an array of textures and geometric forms, the process of image acquisition is easily affected, although the robustness of texture in scenes (e.g., dilapidated buildings) is poor, with high point cloud data, and low recognition efficiency; therefore, the accuracy of building element extraction based on a single data source remains limited. In this research, a method for building façade element extraction based on multidimensional virtual semantic feature map ensemble learning and hierarchical clustering is proposed. Point clouds were obtained by multi-view images, and then the multidimensional virtual semantic feature maps, including color, texture, orientation, and curvature semantics, were acquired via reprojection. The multi-semantic feature block pre-segmentation, considering multiple features, was obtained by ensemble learning, and a hierarchical clustering strategy was established for to achieve fine extraction of building façade elements. Experiments were conducted across multiple building types, and the results showed that: 1) The method can use different virtual semantic feature map and clustering strategies to achieve accurate extraction of diverse building façade elements; 2) The method achieved joint learning tasks in both 2D and 3D space; and, 3) The proposed method achieved fine extraction of building elements with pixel accuracy (PA) over 70% in all experiments and mean intersection over union (mIoU) up to 95%, which were better than the image based method. In summary, this method offers a novel, more reliable method for segmenting and extracting building façade elements, which has important theoretical and practical significance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助昭昭采纳,获得10
刚刚
刚刚
YSK819发布了新的文献求助10
1秒前
3秒前
丘比特应助二狗采纳,获得10
4秒前
5秒前
小马甲应助清脆的书桃采纳,获得10
7秒前
聪慧的怀绿完成签到,获得积分10
7秒前
8秒前
桐桐应助无妄海采纳,获得10
8秒前
Zyc发布了新的文献求助10
9秒前
9秒前
9秒前
askaga完成签到,获得积分10
10秒前
10秒前
10秒前
细心行云完成签到,获得积分10
11秒前
chall发布了新的文献求助20
11秒前
JooYer发布了新的文献求助10
11秒前
12秒前
Bloomy发布了新的文献求助10
12秒前
火羊宝完成签到,获得积分10
14秒前
15秒前
15秒前
16秒前
万能图书馆应助tangtang采纳,获得10
16秒前
实验顺利完成签到,获得积分10
16秒前
丽娜发布了新的文献求助10
16秒前
17秒前
17秒前
19秒前
19秒前
酷波er应助lizhaonian采纳,获得10
20秒前
tmw发布了新的文献求助10
20秒前
田帅完成签到,获得积分10
21秒前
22秒前
Violet完成签到,获得积分10
22秒前
22秒前
22秒前
ls完成签到,获得积分10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5641981
求助须知:如何正确求助?哪些是违规求助? 4757709
关于积分的说明 15015741
捐赠科研通 4800432
什么是DOI,文献DOI怎么找? 2566041
邀请新用户注册赠送积分活动 1524182
关于科研通互助平台的介绍 1483798