Building façade element extraction based on multidimensional virtual semantic feature map ensemble learning and hierarchical clustering

计算机科学 聚类分析 人工智能 点云 特征提取 模式识别(心理学) 建筑模型 稳健性(进化) 计算机视觉 模拟 生物化学 基因 化学
作者
Rongchun Zhang,Yongtao He,Liang Cheng,Xuefeng Yi,Guanming Lu,Lan Yang
出处
期刊:International Journal of Applied Earth Observation and Geoinformation 卷期号:114: 103068-103068
标识
DOI:10.1016/j.jag.2022.103068
摘要

Building façade elements are an important foundation for smart cities. As buildings exhibit an array of textures and geometric forms, the process of image acquisition is easily affected, although the robustness of texture in scenes (e.g., dilapidated buildings) is poor, with high point cloud data, and low recognition efficiency; therefore, the accuracy of building element extraction based on a single data source remains limited. In this research, a method for building façade element extraction based on multidimensional virtual semantic feature map ensemble learning and hierarchical clustering is proposed. Point clouds were obtained by multi-view images, and then the multidimensional virtual semantic feature maps, including color, texture, orientation, and curvature semantics, were acquired via reprojection. The multi-semantic feature block pre-segmentation, considering multiple features, was obtained by ensemble learning, and a hierarchical clustering strategy was established for to achieve fine extraction of building façade elements. Experiments were conducted across multiple building types, and the results showed that: 1) The method can use different virtual semantic feature map and clustering strategies to achieve accurate extraction of diverse building façade elements; 2) The method achieved joint learning tasks in both 2D and 3D space; and, 3) The proposed method achieved fine extraction of building elements with pixel accuracy (PA) over 70% in all experiments and mean intersection over union (mIoU) up to 95%, which were better than the image based method. In summary, this method offers a novel, more reliable method for segmenting and extracting building façade elements, which has important theoretical and practical significance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研小白发布了新的文献求助10
1秒前
muzi871203完成签到,获得积分10
1秒前
rose完成签到,获得积分10
1秒前
1秒前
1秒前
庞伟泽完成签到,获得积分10
1秒前
图灵桑发布了新的文献求助10
2秒前
奻黥发布了新的文献求助10
2秒前
AAA巫发布了新的文献求助10
2秒前
英姑应助vooov采纳,获得30
2秒前
bkagyin应助李盛男采纳,获得10
2秒前
Steven发布了新的文献求助10
3秒前
sdsa完成签到,获得积分10
3秒前
3秒前
标致初晴发布了新的文献求助10
3秒前
3秒前
123456完成签到,获得积分10
4秒前
4秒前
深情安青应助风趣的弘文采纳,获得10
5秒前
5秒前
tianmafei发布了新的文献求助10
5秒前
6秒前
小康完成签到,获得积分10
6秒前
独特妙竹发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
6秒前
Jun发布了新的文献求助30
6秒前
SciGPT应助科研通管家采纳,获得10
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
香蕉觅云应助科研通管家采纳,获得10
7秒前
7秒前
隐形曼青应助科研通管家采纳,获得10
7秒前
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
JamesPei应助科研通管家采纳,获得10
7秒前
科研通AI6应助科研通管家采纳,获得30
7秒前
赘婿应助科研通管家采纳,获得30
7秒前
天天快乐应助科研通管家采纳,获得10
7秒前
传奇3应助科研通管家采纳,获得10
7秒前
冷艳的熊猫完成签到,获得积分10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5624763
求助须知:如何正确求助?哪些是违规求助? 4710606
关于积分的说明 14951556
捐赠科研通 4778691
什么是DOI,文献DOI怎么找? 2553391
邀请新用户注册赠送积分活动 1515355
关于科研通互助平台的介绍 1475679