Building façade element extraction based on multidimensional virtual semantic feature map ensemble learning and hierarchical clustering

计算机科学 聚类分析 人工智能 点云 特征提取 模式识别(心理学) 建筑模型 稳健性(进化) 计算机视觉 模拟 生物化学 基因 化学
作者
Rongchun Zhang,Yongtao He,Liang Cheng,Xuefeng Yi,Guanming Lu,Lan Yang
出处
期刊:International Journal of Applied Earth Observation and Geoinformation 卷期号:114: 103068-103068
标识
DOI:10.1016/j.jag.2022.103068
摘要

Building façade elements are an important foundation for smart cities. As buildings exhibit an array of textures and geometric forms, the process of image acquisition is easily affected, although the robustness of texture in scenes (e.g., dilapidated buildings) is poor, with high point cloud data, and low recognition efficiency; therefore, the accuracy of building element extraction based on a single data source remains limited. In this research, a method for building façade element extraction based on multidimensional virtual semantic feature map ensemble learning and hierarchical clustering is proposed. Point clouds were obtained by multi-view images, and then the multidimensional virtual semantic feature maps, including color, texture, orientation, and curvature semantics, were acquired via reprojection. The multi-semantic feature block pre-segmentation, considering multiple features, was obtained by ensemble learning, and a hierarchical clustering strategy was established for to achieve fine extraction of building façade elements. Experiments were conducted across multiple building types, and the results showed that: 1) The method can use different virtual semantic feature map and clustering strategies to achieve accurate extraction of diverse building façade elements; 2) The method achieved joint learning tasks in both 2D and 3D space; and, 3) The proposed method achieved fine extraction of building elements with pixel accuracy (PA) over 70% in all experiments and mean intersection over union (mIoU) up to 95%, which were better than the image based method. In summary, this method offers a novel, more reliable method for segmenting and extracting building façade elements, which has important theoretical and practical significance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
刘钊扬完成签到,获得积分10
2秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
permanent完成签到,获得积分10
3秒前
guo完成签到,获得积分10
4秒前
赘婿应助真实的板凳采纳,获得10
4秒前
月踏星完成签到 ,获得积分10
4秒前
拼搏向上发布了新的文献求助100
4秒前
李健的粉丝团团长应助1q采纳,获得10
5秒前
冉冉爱吃西瓜完成签到,获得积分10
5秒前
研友_bZz7k8完成签到,获得积分10
5秒前
韦如完成签到 ,获得积分10
6秒前
受伤的涵柳完成签到,获得积分10
6秒前
夏夏完成签到,获得积分10
7秒前
jitanxiang发布了新的文献求助10
8秒前
9秒前
Jasper应助蓓蓓采纳,获得10
12秒前
Zoom应助土地采纳,获得30
12秒前
浮游应助文天采纳,获得10
12秒前
14秒前
15秒前
xgx984完成签到,获得积分10
15秒前
科研通AI6应助张牧之采纳,获得10
16秒前
小福籽完成签到,获得积分10
19秒前
每天100次应助小白采纳,获得20
19秒前
浮游应助科研通管家采纳,获得10
19秒前
浮游应助科研通管家采纳,获得10
19秒前
田様应助科研通管家采纳,获得10
20秒前
哭泣老头完成签到,获得积分20
20秒前
浮游应助科研通管家采纳,获得10
20秒前
Lucas应助科研通管家采纳,获得10
20秒前
共享精神应助科研通管家采纳,获得10
20秒前
SciGPT应助科研通管家采纳,获得10
20秒前
CipherSage应助科研通管家采纳,获得10
20秒前
point1990完成签到,获得积分10
20秒前
云馨应助科研通管家采纳,获得10
20秒前
科研通AI2S应助科研通管家采纳,获得10
20秒前
Hello应助科研通管家采纳,获得10
20秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
La cage des méridiens. La littérature et l’art contemporain face à la globalisation 577
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
Energy-Size Reduction Relationships In Comminution 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4953797
求助须知:如何正确求助?哪些是违规求助? 4216347
关于积分的说明 13118203
捐赠科研通 3998434
什么是DOI,文献DOI怎么找? 2188375
邀请新用户注册赠送积分活动 1203560
关于科研通互助平台的介绍 1116045