MIST: multiple instance learning network based on Swin Transformer for whole slide image classification of colorectal adenomas

人工智能 变压器 计算机科学 模式识别(心理学) 工程类 电气工程 物理 气象学 电压
作者
Hongbin Cai,Xiaobing Feng,Ruomeng Yin,Youcai Zhao,Lingchuan Guo,Xiangshan Fan,Jun Liao
标识
DOI:10.1002/path.6027
摘要

Abstract Colorectal adenoma is a recognized precancerous lesion of colorectal cancer (CRC), and at least 80% of colorectal cancers are malignantly transformed from it. Therefore, it is essential to distinguish benign from malignant adenomas in the early screening of colorectal cancer. Many deep learning computational pathology studies based on whole slide images (WSIs) have been proposed. Most approaches require manual annotation of lesion regions on WSIs, which is time‐consuming and labor‐intensive. This study proposes a new approach, MIST – Multiple Instance learning network based on the Swin Transformer, which can accurately classify colorectal adenoma WSIs only with slide‐level labels. MIST uses the Swin Transformer as the backbone to extract features of images through self‐supervised contrastive learning and uses a dual‐stream multiple instance learning network to predict the class of slides. We trained and validated MIST on 666 WSIs collected from 480 colorectal adenoma patients in the Department of Pathology, The Affiliated Drum Tower Hospital of Nanjing University Medical School. These slides contained six common types of colorectal adenomas. The accuracy of external validation on 273 newly collected WSIs from Nanjing First Hospital was 0.784, which was superior to the existing methods and reached a level comparable to that of the local pathologist's accuracy of 0.806. Finally, we analyzed the interpretability of MIST and observed that the lesion areas of interest in MIST were generally consistent with those of interest to local pathologists. In conclusion, MIST is a low‐burden, interpretable, and effective approach that can be used in colorectal cancer screening and may lead to a potential reduction in the mortality of CRC patients by assisting clinicians in the decision‐making process. © 2022 The Pathological Society of Great Britain and Ireland.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ww完成签到,获得积分10
刚刚
沉默的不言完成签到 ,获得积分10
1秒前
樊书雪完成签到,获得积分10
1秒前
满意的芸完成签到 ,获得积分10
2秒前
共享精神应助神勇的天问采纳,获得10
2秒前
美人鱼战士完成签到 ,获得积分10
2秒前
hehe发布了新的文献求助10
2秒前
front完成签到,获得积分10
2秒前
英姑应助燕海雪采纳,获得10
2秒前
医文轩完成签到,获得积分10
3秒前
小明完成签到,获得积分10
3秒前
科研包完成签到,获得积分10
4秒前
tangzanwayne发布了新的文献求助10
4秒前
复杂的凡梦完成签到,获得积分10
5秒前
dzjin完成签到,获得积分10
7秒前
温婉完成签到,获得积分10
8秒前
孤独的迎滑完成签到,获得积分10
8秒前
三木完成签到 ,获得积分10
9秒前
Bella完成签到,获得积分10
10秒前
523完成签到,获得积分10
10秒前
小道奇完成签到 ,获得积分10
11秒前
蔬菜土豆发布了新的文献求助10
11秒前
任笑白完成签到 ,获得积分10
12秒前
Livvia完成签到,获得积分10
12秒前
Pwrry完成签到,获得积分10
13秒前
亮仔完成签到,获得积分10
14秒前
斯文的天奇完成签到 ,获得积分10
14秒前
安详的韩庆完成签到,获得积分10
14秒前
harric完成签到,获得积分10
15秒前
123456完成签到,获得积分20
15秒前
澈千子完成签到,获得积分10
15秒前
曾建完成签到 ,获得积分10
15秒前
chen完成签到 ,获得积分10
16秒前
喜东东完成签到,获得积分10
16秒前
孤独梦曼完成签到,获得积分10
16秒前
Jasper应助慕容松采纳,获得10
17秒前
亮仔发布了新的文献求助10
18秒前
18秒前
HAL9000完成签到,获得积分10
18秒前
昵称完成签到,获得积分10
19秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950021
求助须知:如何正确求助?哪些是违规求助? 3495367
关于积分的说明 11076612
捐赠科研通 3225910
什么是DOI,文献DOI怎么找? 1783346
邀请新用户注册赠送积分活动 867609
科研通“疑难数据库(出版商)”最低求助积分说明 800855