MIST: multiple instance learning network based on Swin Transformer for whole slide image classification of colorectal adenomas

结直肠癌 医学 人工智能 腺瘤 深度学习 可解释性 病变 计算机科学 机器学习 病理 癌症 内科学 物理 气象学
作者
Hongbin Cai,Xiaobing Feng,Ruomeng Yin,Youcai Zhao,Lingchuan Guo,Xiangshan Fan,Jun Liao
标识
DOI:10.1002/path.6027
摘要

Colorectal adenoma is a recognized precancerous lesion of colorectal cancer (CRC), and at least 80% of colorectal cancers are malignantly transformed from it. Therefore, it is essential to distinguish benign from malignant adenomas in the early screening of colorectal cancer. Many deep learning computational pathology studies based on whole slide images (WSIs) have been proposed. Most approaches require manual annotation of lesion regions on WSIs, which is time-consuming and labor-intensive. This study proposes a new approach, MIST - Multiple Instance learning network based on the Swin Transformer, which can accurately classify colorectal adenoma WSIs only with slide-level labels. MIST uses the Swin Transformer as the backbone to extract features of images through self-supervised contrastive learning and uses a dual-stream multiple instance learning network to predict the class of slides. We trained and validated MIST on 666 WSIs collected from 480 colorectal adenoma patients in the Department of Pathology, The Affiliated Drum Tower Hospital of Nanjing University Medical School. These slides contained six common types of colorectal adenomas. The accuracy of external validation on 273 newly collected WSIs from Nanjing First Hospital was 0.784, which was superior to the existing methods and reached a level comparable to that of the local pathologist's accuracy of 0.806. Finally, we analyzed the interpretability of MIST and observed that the lesion areas of interest in MIST were generally consistent with those of interest to local pathologists. In conclusion, MIST is a low-burden, interpretable, and effective approach that can be used in colorectal cancer screening and may lead to a potential reduction in the mortality of CRC patients by assisting clinicians in the decision-making process. © 2022 The Pathological Society of Great Britain and Ireland.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大模型应助迅速友容采纳,获得10
2秒前
桐桐应助jsczszn采纳,获得10
3秒前
3秒前
3秒前
4秒前
4秒前
镜哥完成签到,获得积分10
5秒前
科研通AI2S应助sherwing2009采纳,获得10
5秒前
6秒前
小田完成签到 ,获得积分10
7秒前
8秒前
小李子完成签到 ,获得积分10
8秒前
欣喜大地完成签到 ,获得积分10
8秒前
搞怪隶发布了新的文献求助10
9秒前
11秒前
14秒前
12345发布了新的文献求助10
15秒前
文艺的鸵鸟完成签到,获得积分10
16秒前
ywl完成签到 ,获得积分10
17秒前
希望天下0贩的0应助百里采纳,获得30
17秒前
18秒前
Sophie的四月物语完成签到 ,获得积分10
18秒前
19秒前
LionontheMars完成签到,获得积分10
22秒前
22秒前
闫磊完成签到,获得积分10
23秒前
wtg发布了新的文献求助10
24秒前
LionontheMars发布了新的文献求助10
24秒前
轩辕访波发布了新的文献求助10
24秒前
25秒前
感动的红酒完成签到,获得积分10
25秒前
虚幻龙猫完成签到,获得积分10
27秒前
Aloha完成签到,获得积分10
28秒前
CodeCraft应助舒心羊青采纳,获得10
34秒前
含蓄的明雪应助王荣超采纳,获得10
35秒前
sciN完成签到 ,获得积分10
37秒前
轩辕访波完成签到,获得积分10
37秒前
科研通AI2S应助sherwing2009采纳,获得10
38秒前
cm发布了新的文献求助10
41秒前
43秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3155941
求助须知:如何正确求助?哪些是违规求助? 2807235
关于积分的说明 7872173
捐赠科研通 2465563
什么是DOI,文献DOI怎么找? 1312264
科研通“疑难数据库(出版商)”最低求助积分说明 629977
版权声明 601905