MIST: multiple instance learning network based on Swin Transformer for whole slide image classification of colorectal adenomas

人工智能 变压器 计算机科学 模式识别(心理学) 工程类 电气工程 物理 气象学 电压
作者
Hongbin Cai,Xiaobing Feng,Ruomeng Yin,Youcai Zhao,Lingchuan Guo,Xiangshan Fan,Jun Liao
标识
DOI:10.1002/path.6027
摘要

Abstract Colorectal adenoma is a recognized precancerous lesion of colorectal cancer (CRC), and at least 80% of colorectal cancers are malignantly transformed from it. Therefore, it is essential to distinguish benign from malignant adenomas in the early screening of colorectal cancer. Many deep learning computational pathology studies based on whole slide images (WSIs) have been proposed. Most approaches require manual annotation of lesion regions on WSIs, which is time‐consuming and labor‐intensive. This study proposes a new approach, MIST – Multiple Instance learning network based on the Swin Transformer, which can accurately classify colorectal adenoma WSIs only with slide‐level labels. MIST uses the Swin Transformer as the backbone to extract features of images through self‐supervised contrastive learning and uses a dual‐stream multiple instance learning network to predict the class of slides. We trained and validated MIST on 666 WSIs collected from 480 colorectal adenoma patients in the Department of Pathology, The Affiliated Drum Tower Hospital of Nanjing University Medical School. These slides contained six common types of colorectal adenomas. The accuracy of external validation on 273 newly collected WSIs from Nanjing First Hospital was 0.784, which was superior to the existing methods and reached a level comparable to that of the local pathologist's accuracy of 0.806. Finally, we analyzed the interpretability of MIST and observed that the lesion areas of interest in MIST were generally consistent with those of interest to local pathologists. In conclusion, MIST is a low‐burden, interpretable, and effective approach that can be used in colorectal cancer screening and may lead to a potential reduction in the mortality of CRC patients by assisting clinicians in the decision‐making process. © 2022 The Pathological Society of Great Britain and Ireland.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
阿信完成签到,获得积分10
1秒前
风云无泪发布了新的文献求助10
2秒前
英姑应助nana采纳,获得10
2秒前
2秒前
3秒前
xyh完成签到,获得积分10
4秒前
汉堡包应助小柴胡采纳,获得30
4秒前
iris2333发布了新的文献求助10
6秒前
7秒前
xyh发布了新的文献求助10
8秒前
9秒前
zxm完成签到,获得积分10
10秒前
10秒前
十二平均律完成签到,获得积分10
11秒前
丘比特应助健康的幻珊采纳,获得30
12秒前
X1发布了新的文献求助10
12秒前
12秒前
Lishumin完成签到,获得积分10
13秒前
LaTeXer应助xingxing采纳,获得50
13秒前
香蕉觅云应助沙洲采纳,获得10
13秒前
14秒前
15秒前
MM完成签到 ,获得积分10
15秒前
英俊雪曼发布了新的文献求助10
17秒前
nana发布了新的文献求助10
18秒前
18秒前
英俊的铭应助阿修罗采纳,获得10
18秒前
臧为发布了新的文献求助10
18秒前
吴彦祖发布了新的文献求助10
18秒前
科研通AI6应助葡萄夹子采纳,获得10
19秒前
19秒前
19秒前
21秒前
21秒前
科研通AI6应助哈哈哈采纳,获得10
21秒前
搜集达人应助高挑的鑫磊采纳,获得10
21秒前
52Hertz发布了新的文献求助10
21秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5537501
求助须知:如何正确求助?哪些是违规求助? 4624968
关于积分的说明 14594101
捐赠科研通 4565491
什么是DOI,文献DOI怎么找? 2502427
邀请新用户注册赠送积分活动 1481018
关于科研通互助平台的介绍 1452211