BrainGB: A Benchmark for Brain Network Analysis With Graph Neural Networks

计算机科学 连接体 神经影像学 人工智能 Python(编程语言) 水准点(测量) 机器学习 模式 连接组学 功率图分析 人工神经网络 可视化 桥接(联网) 人类连接体项目 图形 数据科学 功能连接 理论计算机科学 程序设计语言 神经科学 社会学 地理 生物 社会科学 计算机网络 大地测量学
作者
Hejie Cui,Wei Dai,Yanqiao Zhu,Xuan Kan,Antonio Aodong Chen Gu,Joshua Lukemire,Liang Zhan,Lifang He,Ying Guo,Carl Yang
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:42 (2): 493-506 被引量:87
标识
DOI:10.1109/tmi.2022.3218745
摘要

Mapping the connectome of the human brain using structural or functional connectivity has become one of the most pervasive paradigms for neuroimaging analysis. Recently, Graph Neural Networks (GNNs) motivated from geometric deep learning have attracted broad interest due to their established power for modeling complex networked data. Despite their superior performance in many fields, there has not yet been a systematic study of how to design effective GNNs for brain network analysis. To bridge this gap, we present BrainGB, a benchmark for brain network analysis with GNNs. BrainGB standardizes the process by (1) summarizing brain network construction pipelines for both functional and structural neuroimaging modalities and (2) modularizing the implementation of GNN designs. We conduct extensive experiments on datasets across cohorts and modalities and recommend a set of general recipes for effective GNN designs on brain networks. To support open and reproducible research on GNN-based brain network analysis, we host the BrainGB website at https://braingb.us with models, tutorials, examples, as well as an out-of-box Python package. We hope that this work will provide useful empirical evidence and offer insights for future research in this novel and promising direction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
欢呼怜烟发布了新的文献求助10
刚刚
刚刚
刚刚
boyis完成签到,获得积分10
1秒前
李健的小迷弟应助苜蓿采纳,获得10
1秒前
1秒前
MBL完成签到,获得积分10
1秒前
田様应助smin采纳,获得10
2秒前
2秒前
2秒前
木瑾发布了新的文献求助10
2秒前
传奇3应助小梁砖家采纳,获得10
3秒前
LSX发布了新的文献求助10
3秒前
3秒前
韶夜阑完成签到,获得积分20
3秒前
大模型应助刘岩松采纳,获得10
3秒前
崔彤完成签到,获得积分10
4秒前
geold发布了新的文献求助10
4秒前
4秒前
开心完成签到,获得积分10
4秒前
5秒前
浮游应助科研通管家采纳,获得10
5秒前
5秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
ding应助科研通管家采纳,获得10
6秒前
6秒前
Ava应助科研通管家采纳,获得10
6秒前
在水一方应助科研通管家采纳,获得10
6秒前
传奇3应助科研通管家采纳,获得10
6秒前
6秒前
赘婿应助积极慕晴采纳,获得10
6秒前
Akim应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
6秒前
6秒前
我是老大应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646180
求助须知:如何正确求助?哪些是违规求助? 4770425
关于积分的说明 15033724
捐赠科研通 4804901
什么是DOI,文献DOI怎么找? 2569318
邀请新用户注册赠送积分活动 1526307
关于科研通互助平台的介绍 1485803