材料科学
蒸发
光热治疗
多孔性
碳纤维
化学工程
飞秒
纳米技术
石墨烯
光电子学
复合材料
激光器
光学
物理
气象学
工程类
复合数
作者
Fenghua Liu,Yunjiao Gu,Yigu Hu,Zan Wang,Yuesheng Ning,Robert Bradley,Deyuan Lou,Binyuan Zhao,Weiping Wu
出处
期刊:Solar RRL
[Wiley]
日期:2022-10-26
卷期号:7 (2)
被引量:9
标识
DOI:10.1002/solr.202200803
摘要
Solar‐energy‐powered interfacial evaporation is the most meaningful strategy for energy utilization, water desalination, and mineral purification. It can achieve high efficiency, low‐density energy, and sustainable harvest and utilization. However, the microstructure and surface/interface design still lead to a balance between solar–thermal conversion, water conduction, and thermal management, which also determines the efficiency of photothermal interfacial evaporation. Here, a free‐standing, ultrathin carbon film with a tunable nanopore diameter is prepared and used as a blackbody layer for solar photothermal evaporation. By 3D reconstruction methods, the effect of pore structure on interfacial evaporation is systematically studied. Hierarchical porous carbon film with an average pore size of about 300 nm exhibits outstanding photothermal evaporation performance, reaching up to 1.96 kg m −2 h −1 with excellent stability. Ultra‐hydrophobic, optically enhanced absorption graphene array is constructed on the carbon film surface through femtosecond laser nanoprocessing, further increasing the evaporation rate to 2.12 kg m −2 h −1 (1 sun) and 5.55 kg m −2 h −1 (3 suns).
科研通智能强力驱动
Strongly Powered by AbleSci AI