In silico analysis revealed the potential circRNA-miRNA-mRNA regulative network of non-small cell lung cancer (NSCLC)

生物 计算生物学 小RNA 生物信息学 基因 非小细胞肺癌 肺癌 癌症研究 遗传学 A549电池 肿瘤科 医学
作者
Ambritha Balasundaram,C. George Priya Doss
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:152: 106315-106315 被引量:5
标识
DOI:10.1016/j.compbiomed.2022.106315
摘要

The primary source of death in the world is non-small cell lung cancer (NSCLC). However, NSCLCs pathophysiology is still not completely understood. The current work sought to study the differential expression of mRNAs involved in NSCLC and their interactions with miRNAs and circRNAs.We utilized three microarray datasets (GSE21933, GSE27262, and GSE33532) from the GEO NCBI database to identify the differentially expressed genes (DEGs) in NSCLC. We employed DAVID Functional annotation tool to investigate the underlying GO biological process, molecular functions, and KEGG pathways involved in NSCLC. We performed the Protein-protein interaction (PPI) network, MCODE, and CytoHubba analysis from Cytoscape software to identify the significant DEGs in NSCLC. We utilized miRnet to anticipate and build interaction between miRNAs and mRNAs in NSCLC and ENCORI to predict the miRNA-circRNA relationships and build the ceRNA regulatory network. Finally, we executed the gene expression and Kaplan-Meier survival analysis to validate the significant DEGs in the ceRNA network utilizing TCGA NSCLC and GEPIA data.We revealed a total of 156 overlapped DEGs (47 upregulated and 109 downregulated genes) in NSCLC. The PPI network, MCODE, and CytoHubba analysis revealed 12 hub genes (cdkn3, rrm2, ccnb1, aurka, nuf2, tyms, kif11, hmmr, ccnb2, nek2, anln, and birc5) that are associated with NSCLC. We identified that these 12 genes encode 12 mRNAs that are strongly linked with 8 miRNAs, and further, we revealed that 1 circRNA was associated with this 5 miRNA. We constructed the ceRNAs network that contained 1circRNA-5miRNAs-7mRNAs. The expression of these seven significant genes in LUAD & LUSC (NSCLC) was considerably higher in the TCGA database than in normal tissues. Kaplan-Meier survival plot reveals that increased expression of these hub genes was related to a poor survival rate in LUAD.Overall, we developed a circRNA-miRNA-mRNA regulation network to study the probable mechanism of NSCLC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qiqi完成签到,获得积分20
1秒前
1秒前
albertchan完成签到,获得积分10
7秒前
7秒前
feifei发布了新的文献求助10
8秒前
9秒前
魁拔蛮吉完成签到 ,获得积分10
11秒前
晓峰完成签到,获得积分20
11秒前
yearluren完成签到,获得积分10
11秒前
peiyy完成签到,获得积分10
11秒前
领导范儿应助TT采纳,获得10
16秒前
清脆代桃完成签到 ,获得积分10
16秒前
科研通AI5应助ghh采纳,获得10
16秒前
叫滚滚发布了新的文献求助10
16秒前
北极熊爱去非洲买蜂蜜小蛋糕完成签到 ,获得积分10
18秒前
yeyong11完成签到,获得积分10
21秒前
CodeCraft应助柔弱的鱼采纳,获得30
22秒前
黄可以完成签到,获得积分10
22秒前
美少叔叔完成签到 ,获得积分10
23秒前
心灵美的修洁完成签到 ,获得积分10
24秒前
lzd完成签到,获得积分10
26秒前
27秒前
诸笑白发布了新的文献求助10
29秒前
29秒前
研友_LOK59L完成签到,获得积分10
31秒前
七子完成签到 ,获得积分10
32秒前
郑盼秋完成签到,获得积分10
32秒前
youjiang发布了新的文献求助10
33秒前
35秒前
孤独收割人完成签到,获得积分10
35秒前
星辰坠于海应助丰盛的煎饼采纳,获得666
37秒前
Upupcc发布了新的文献求助10
39秒前
39秒前
勤劳落雁发布了新的文献求助10
40秒前
40秒前
40秒前
41秒前
41秒前
41秒前
周周发布了新的文献求助10
41秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3528020
求助须知:如何正确求助?哪些是违规求助? 3108260
关于积分的说明 9288139
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540202
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849