In silico analysis revealed the potential circRNA-miRNA-mRNA regulative network of non-small cell lung cancer (NSCLC)

生物 计算生物学 小RNA 生物信息学 基因 非小细胞肺癌 肺癌 癌症研究 遗传学 A549电池 肿瘤科 医学
作者
Ambritha Balasundaram,C. George Priya Doss
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:152: 106315-106315 被引量:5
标识
DOI:10.1016/j.compbiomed.2022.106315
摘要

The primary source of death in the world is non-small cell lung cancer (NSCLC). However, NSCLCs pathophysiology is still not completely understood. The current work sought to study the differential expression of mRNAs involved in NSCLC and their interactions with miRNAs and circRNAs.We utilized three microarray datasets (GSE21933, GSE27262, and GSE33532) from the GEO NCBI database to identify the differentially expressed genes (DEGs) in NSCLC. We employed DAVID Functional annotation tool to investigate the underlying GO biological process, molecular functions, and KEGG pathways involved in NSCLC. We performed the Protein-protein interaction (PPI) network, MCODE, and CytoHubba analysis from Cytoscape software to identify the significant DEGs in NSCLC. We utilized miRnet to anticipate and build interaction between miRNAs and mRNAs in NSCLC and ENCORI to predict the miRNA-circRNA relationships and build the ceRNA regulatory network. Finally, we executed the gene expression and Kaplan-Meier survival analysis to validate the significant DEGs in the ceRNA network utilizing TCGA NSCLC and GEPIA data.We revealed a total of 156 overlapped DEGs (47 upregulated and 109 downregulated genes) in NSCLC. The PPI network, MCODE, and CytoHubba analysis revealed 12 hub genes (cdkn3, rrm2, ccnb1, aurka, nuf2, tyms, kif11, hmmr, ccnb2, nek2, anln, and birc5) that are associated with NSCLC. We identified that these 12 genes encode 12 mRNAs that are strongly linked with 8 miRNAs, and further, we revealed that 1 circRNA was associated with this 5 miRNA. We constructed the ceRNAs network that contained 1circRNA-5miRNAs-7mRNAs. The expression of these seven significant genes in LUAD & LUSC (NSCLC) was considerably higher in the TCGA database than in normal tissues. Kaplan-Meier survival plot reveals that increased expression of these hub genes was related to a poor survival rate in LUAD.Overall, we developed a circRNA-miRNA-mRNA regulation network to study the probable mechanism of NSCLC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
雪白的从筠完成签到,获得积分10
刚刚
帕克发布了新的文献求助10
刚刚
2秒前
NexusExplorer应助默默的鱼丸采纳,获得10
3秒前
英姑应助山月采纳,获得10
3秒前
4秒前
辛勤的飞烟关注了科研通微信公众号
5秒前
6秒前
Sunny完成签到,获得积分10
6秒前
Amanda完成签到 ,获得积分10
7秒前
完美世界应助橙子采纳,获得10
8秒前
9秒前
YUgg完成签到,获得积分10
10秒前
10秒前
啦啦啦发布了新的文献求助10
10秒前
10秒前
11秒前
plq完成签到 ,获得积分10
11秒前
端庄修杰完成签到,获得积分10
12秒前
ylf完成签到,获得积分10
13秒前
15秒前
默默的鱼丸完成签到,获得积分10
15秒前
山月发布了新的文献求助10
16秒前
虚心的宛亦完成签到,获得积分10
16秒前
16秒前
16秒前
Zhushijue关注了科研通微信公众号
17秒前
安东发布了新的文献求助30
18秒前
21秒前
22秒前
Z1070741749完成签到,获得积分10
22秒前
舒心小猫咪完成签到 ,获得积分10
22秒前
啦啦啦完成签到,获得积分10
24秒前
25秒前
姝_发布了新的文献求助10
25秒前
周芷卉完成签到 ,获得积分10
25秒前
26秒前
27秒前
小西发布了新的文献求助10
28秒前
28秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3124803
求助须知:如何正确求助?哪些是违规求助? 2775148
关于积分的说明 7725553
捐赠科研通 2430633
什么是DOI,文献DOI怎么找? 1291291
科研通“疑难数据库(出版商)”最低求助积分说明 622121
版权声明 600328