Machine Learning with Neural Networks to Enhance Selectivity of Nonenzymatic Electrochemical Biosensors in Multianalyte Mixtures

计时安培法 生物传感器 选择性 乳酸 材料科学 电化学 人工神经网络 计算机科学 纳米技术 生物系统 电极 机器学习 化学 循环伏安法 有机化学 物理化学 催化作用 生物 细菌 遗传学
作者
Zhongzeng Zhou,Luojun Wang,Jing Wang,Conghui Liu,Tailin Xu,Xueji Zhang
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:14 (47): 52684-52690 被引量:25
标识
DOI:10.1021/acsami.2c17593
摘要

Nonenzymatic biosensors hold great potential in the field of analysis and detection due to long-term stability, high sensitivity, and low cost. However, the relative low selectivity, especially the overlapped oxidation peaks of biomarkers, in the biological matrix severely limits the practical application. In this work, we introduce an intelligent back-propagation neural network into nonenzymatic electrochemical biosensing to overcome the limitation of low selectivity for glucose and lactate detection. After simple electrodeposition and dropping modification, three working electrodes with distinct characters are fabricated and integrated into electrochemical microdroplet arrays for glucose and lactic acid detection. By analyzing chronoamperometry data from a standard mixture of glucose and lactate in varying concentrations, a database of highly selective detection can be simply established. The trained neural network model can reliably identify and accurately predict the concentration of glucose and lactic acid in the range of 0.25-20 mM with a correlation coefficient of 0.9997 in multianalyte mixtures. More importantly, the predicted results of serum samples are precise, and the relative standard deviation is less than 6.5%, proving the possible applicability of this method in real scenarios. This innovative method to enhance selectivity can avoid complex material synthesis and selection, and the highly specific nonenzymatic electrochemical biosensing platform paves the way for intelligent and precise point-of-care detection in long-term and is of low cost.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
兴奋雁蓉完成签到,获得积分10
2秒前
慕青应助zhang采纳,获得10
2秒前
gggg发布了新的文献求助80
3秒前
月兮2013发布了新的文献求助10
4秒前
5秒前
白白白完成签到 ,获得积分10
5秒前
在水一方应助陈昇采纳,获得10
8秒前
9秒前
GDL发布了新的文献求助30
11秒前
祖严青完成签到,获得积分10
12秒前
ZOLEI发布了新的文献求助50
12秒前
13秒前
14秒前
15秒前
15秒前
ambition发布了新的文献求助10
17秒前
17秒前
实验室牛马完成签到,获得积分10
18秒前
FF完成签到 ,获得积分10
20秒前
肉松小贝完成签到,获得积分10
20秒前
zhang发布了新的文献求助10
21秒前
点点zzz发布了新的文献求助10
21秒前
陈昇发布了新的文献求助10
21秒前
好的发布了新的文献求助20
22秒前
华仔应助ambition采纳,获得10
23秒前
maox1aoxin应助ccc1993采纳,获得60
24秒前
小呆呆发布了新的文献求助200
25秒前
26秒前
26秒前
英俊的铭应助pikahe采纳,获得10
27秒前
ding应助下凡采纳,获得10
28秒前
小蘑菇应助kekeke科采纳,获得10
30秒前
30秒前
31秒前
丰富雅容发布了新的文献求助100
32秒前
重要的向露完成签到,获得积分20
33秒前
34秒前
祖严青发布了新的文献求助20
35秒前
36秒前
好的完成签到,获得积分10
39秒前
高分求助中
Comprehensive natural products III : chemistry and biology 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
Zeitschrift für Orient-Archäologie 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Equality: What It Means and Why It Matters 300
A new Species and a key to Indian species of Heirodula Burmeister (Mantodea: Mantidae) 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3346458
求助须知:如何正确求助?哪些是违规求助? 2973193
关于积分的说明 8658263
捐赠科研通 2653611
什么是DOI,文献DOI怎么找? 1453276
科研通“疑难数据库(出版商)”最低求助积分说明 672801
邀请新用户注册赠送积分活动 662691