Machine Learning with Neural Networks to Enhance Selectivity of Nonenzymatic Electrochemical Biosensors in Multianalyte Mixtures

计时安培法 生物传感器 选择性 乳酸 材料科学 电化学 人工神经网络 计算机科学 纳米技术 生物系统 电极 机器学习 化学 循环伏安法 有机化学 物理化学 催化作用 生物 细菌 遗传学
作者
Zhongzeng Zhou,Luojun Wang,Jing Wang,Conghui Liu,Tailin Xu,Xueji Zhang
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:14 (47): 52684-52690 被引量:26
标识
DOI:10.1021/acsami.2c17593
摘要

Nonenzymatic biosensors hold great potential in the field of analysis and detection due to long-term stability, high sensitivity, and low cost. However, the relative low selectivity, especially the overlapped oxidation peaks of biomarkers, in the biological matrix severely limits the practical application. In this work, we introduce an intelligent back-propagation neural network into nonenzymatic electrochemical biosensing to overcome the limitation of low selectivity for glucose and lactate detection. After simple electrodeposition and dropping modification, three working electrodes with distinct characters are fabricated and integrated into electrochemical microdroplet arrays for glucose and lactic acid detection. By analyzing chronoamperometry data from a standard mixture of glucose and lactate in varying concentrations, a database of highly selective detection can be simply established. The trained neural network model can reliably identify and accurately predict the concentration of glucose and lactic acid in the range of 0.25-20 mM with a correlation coefficient of 0.9997 in multianalyte mixtures. More importantly, the predicted results of serum samples are precise, and the relative standard deviation is less than 6.5%, proving the possible applicability of this method in real scenarios. This innovative method to enhance selectivity can avoid complex material synthesis and selection, and the highly specific nonenzymatic electrochemical biosensing platform paves the way for intelligent and precise point-of-care detection in long-term and is of low cost.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yiyiyi完成签到 ,获得积分10
1秒前
簌落发布了新的文献求助10
2秒前
周冯雪完成签到 ,获得积分10
3秒前
cui发布了新的文献求助10
3秒前
洪山老狗发布了新的文献求助10
4秒前
等待发布了新的文献求助10
5秒前
高贵宛海发布了新的文献求助10
6秒前
不是当地完成签到,获得积分10
7秒前
Orange应助sylnd126采纳,获得10
7秒前
ffff完成签到,获得积分10
8秒前
9秒前
科目三应助idynamics采纳,获得10
9秒前
明理的舞仙完成签到,获得积分10
11秒前
茜茜完成签到,获得积分10
11秒前
smiling完成签到 ,获得积分10
11秒前
13秒前
干饭大王应助洪山老狗采纳,获得10
13秒前
13秒前
lemono_o发布了新的文献求助10
14秒前
今后应助王三爷采纳,获得50
14秒前
16秒前
彭于晏应助胖Q采纳,获得10
16秒前
17秒前
小马甲应助spark采纳,获得10
17秒前
17秒前
叶明昭完成签到,获得积分10
18秒前
李鹏飞完成签到,获得积分20
18秒前
18秒前
21秒前
21秒前
21秒前
折柳完成签到 ,获得积分10
22秒前
Ivy发布了新的文献求助10
23秒前
慕青应助开心友儿采纳,获得10
24秒前
25秒前
26秒前
26秒前
Pan发布了新的文献求助10
27秒前
彭于晏应助姬昌采纳,获得10
28秒前
英俊的铭应助雪落六年yyds采纳,获得10
29秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966082
求助须知:如何正确求助?哪些是违规求助? 3511457
关于积分的说明 11158333
捐赠科研通 3246107
什么是DOI,文献DOI怎么找? 1793292
邀请新用户注册赠送积分活动 874284
科研通“疑难数据库(出版商)”最低求助积分说明 804324