Optimized multimodal logistics planning of modular integrated construction using hybrid multi-agent and metamodeling

元建模 模块化设计 计算机科学 系统工程 过程管理 人工智能 软件工程 工程类 程序设计语言
作者
Mohamed Hussein,Ahmed Karam,Abdelrahman E. E. Eltoukhy,Amos Darko,Tarek Zayed
出处
期刊:Automation in Construction [Elsevier]
卷期号:145: 104637-104637 被引量:28
标识
DOI:10.1016/j.autcon.2022.104637
摘要

Multimodal logistics (ML), which involves multiple transportation modes, has been increasingly used in many Modular integrated Construction (MiC) projects. However, the literature lacks decision support systems (DSS) to simulate, analyze, and optimize ML in MiC (ML-MiC). This paper fills this gap by achieving the following objectives: 1) simulate the internal operations of ML-MiC stakeholders (e.g., manufacturers, logistics service providers, contractors) and their interactions; 2) identify the significant decisions that impact the key performance measures (KPMs) of ML-MiC; and 3) obtain the near-optimum decisions that improve the sustainability of ML-MiC. These objectives are achieved by developing a holistic modelling approach that integrates three methods. First, hybrid multi-agent simulation models the communications between ML-MiC stakeholders and their internal operations. Second, design of experiments (DOE) reveals the main and interaction effects between logistics and construction decisions that significantly affect KPMs, such as the project duration, total costs, and carbon emissions. Third, metamodeling finds the near-optimum logistics and construction decisions (e.g., trucks' number, their dispatching time, ship capacity, inventory, resource planning) that enhance KPMs. The developed approach is applied to a real case study. The DOE analysis indicates that some logistics decisions significantly influence construction KPMs (e.g., project duration, construction costs, construction emissions) and vice versa, calling for more collaboration between stakeholders. Also, the optimized solutions reduce the project duration, total costs, and emissions by 28%, 50%, and 17%, respectively. This paper contributes by integrating three methods to model ML-MiC and enable its stakeholders to discern the impact of their decisions on multiple KPMs and optimize them toward more sustainable MiC. Given this paper's findings, future researchers are urged to investigate the success factors and barriers to applying ML in MiC. Also, the paper emphasizes the need to develop DSS that achieve a win-win collaboration and enhance communication between ML-MiC stakeholders. • Multimodal logistics (ML) are used to import modular units from overseas factories. • The literature lacks models to assess, analyze and optimize ML-related decisions. • A developed multi-agent model evaluates multiple project performance measures (PMs). • A diagnostic analysis reveals the significant ML decisions that impact each of PMs. • Metamodeling finds the optimum ML decisions to improve PMs of modular construction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助guozizi采纳,获得10
1秒前
zg发布了新的文献求助10
1秒前
2秒前
3秒前
4秒前
卢千愁发布了新的文献求助10
4秒前
4秒前
思源应助bmx采纳,获得10
5秒前
脑洞疼应助年轻思山采纳,获得10
6秒前
不敢自称科研人完成签到,获得积分10
6秒前
Jasper应助震动的剑通采纳,获得10
7秒前
小火锅完成签到,获得积分10
7秒前
zg完成签到,获得积分10
8秒前
Brain发布了新的文献求助10
8秒前
9秒前
香菜完成签到 ,获得积分10
11秒前
11秒前
Shelley发布了新的文献求助10
11秒前
久晴完成签到,获得积分10
12秒前
JamesPei应助12采纳,获得10
13秒前
隐形曼青应助小小莫采纳,获得10
13秒前
Knight完成签到,获得积分10
13秒前
今后应助小火锅采纳,获得10
14秒前
一一完成签到,获得积分10
14秒前
大佬发布了新的文献求助10
15秒前
yuyu给yuyu的求助进行了留言
16秒前
Brain完成签到,获得积分10
18秒前
万能图书馆应助缪伟采纳,获得10
20秒前
lybin完成签到,获得积分10
21秒前
24秒前
FF完成签到 ,获得积分10
25秒前
26秒前
段章完成签到 ,获得积分10
27秒前
28秒前
28秒前
29秒前
高沅发布了新的文献求助10
30秒前
infer1024完成签到 ,获得积分10
30秒前
中国居里完成签到 ,获得积分10
32秒前
Mira完成签到,获得积分10
34秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 量子力学 冶金 电极
热门帖子
关注 科研通微信公众号,转发送积分 3316704
求助须知:如何正确求助?哪些是违规求助? 2948473
关于积分的说明 8540804
捐赠科研通 2624359
什么是DOI,文献DOI怎么找? 1436100
科研通“疑难数据库(出版商)”最低求助积分说明 665796
邀请新用户注册赠送积分活动 651724