亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Towards self-learning control of HVAC systems with the consideration of dynamic occupancy patterns: Application of model-free deep reinforcement learning

占用率 暖通空调 强化学习 计算机科学 钢筋 控制(管理) 工程类 人工智能 控制工程 建筑工程 空调 结构工程 机械工程
作者
Mohammad Esrafilian-Najafabadi,Fariborz Haghighat
出处
期刊:Building and Environment [Elsevier]
卷期号:226: 109747-109747 被引量:1
标识
DOI:10.1016/j.buildenv.2022.109747
摘要

This study proposes a self-learning control system that aims to learn occupancy profiles, building energy consumption patterns, and lag-time of the heating, ventilation, and air-conditioning (HVAC) systems. The control system learns by interacting with the environment with no need to develop building models and occupancy prediction models. The controller is developed based on a double deep Q-networks (DDQN) algorithm, as a model-free reinforcement learning method. The system's performance is evaluated and compared with that of a model predictive control (MPC) system under two scenarios of perfect and actual occupancy predictions based on occupancy data collected from 20 residential units. The MPC is assisted by a genetic algorithm and supervised learning models for predicting future occupancy patterns, indoor operative temperature, and building energy consumption. The results show that in the case of using perfect occupancy prediction, the self-learning controller operates almost as well as the MPC while not requiring any models. When occupancy prediction uncertainty is added to the problem, the proposed method outperforms the MPC in terms of thermal comfort by increasing the average temperature deviation and deviation period by 0.24 °C and 7.87%, respectively. However, the DDQN agent causes significant thermal comfort violations during the initial training period. The system causes up to a 2.8% longer deviation period and a 0.32 °C higher average temperature deviation, compared with the performance of the fully-trained system. • A self-learning occupancy-based predictive control system is developed. • Double deep Q-network is utilized as a model-free reinforcement learning technique. • The performance is compared with that of a model predictive control. • Thermal comfort is improved by 7.87% with no need for occupancy and building models. • Trial-and-error-based learning process causes almost 2.8% thermal discomfort.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Rebeccaiscute完成签到 ,获得积分10
37秒前
Iron_five完成签到 ,获得积分0
42秒前
1分钟前
nikg发布了新的文献求助10
1分钟前
诗梦完成签到,获得积分10
1分钟前
YifanWang应助科研通管家采纳,获得30
1分钟前
青葱鱼块完成签到 ,获得积分10
2分钟前
2分钟前
以七完成签到 ,获得积分10
2分钟前
sdkabdrxt完成签到,获得积分10
2分钟前
2分钟前
krajicek发布了新的文献求助10
3分钟前
3分钟前
闪闪沂完成签到 ,获得积分10
3分钟前
科研通AI6.2应助刻苦不弱采纳,获得10
4分钟前
4分钟前
小神仙完成签到 ,获得积分10
4分钟前
4分钟前
Isaac完成签到 ,获得积分10
4分钟前
刻苦不弱发布了新的文献求助10
4分钟前
5分钟前
毛耳朵发布了新的文献求助10
5分钟前
yzy完成签到 ,获得积分10
5分钟前
互助应助毛耳朵采纳,获得10
5分钟前
乐乐应助毛耳朵采纳,获得10
5分钟前
NattyPoe发布了新的文献求助10
5分钟前
忧心的士萧完成签到,获得积分10
5分钟前
今后应助科研通管家采纳,获得10
5分钟前
5分钟前
5分钟前
夏天无完成签到 ,获得积分10
5分钟前
Cloud发布了新的文献求助10
5分钟前
6分钟前
gkhsdvkb发布了新的文献求助10
6分钟前
yin景景完成签到,获得积分10
6分钟前
科研通AI6.2应助开霁采纳,获得10
6分钟前
李健的小迷弟应助颖颖采纳,获得10
6分钟前
7分钟前
颖颖发布了新的文献求助10
7分钟前
颖颖完成签到,获得积分10
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
生活在欺瞒的年代:傅树介政治斗争回忆录 260
Mastering Prompt Engineering: A Complete Guide 200
Elastography for characterization of focal liver lesions: current evidence and future perspectives 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5870851
求助须知:如何正确求助?哪些是违规求助? 6468547
关于积分的说明 15665078
捐赠科研通 4987083
什么是DOI,文献DOI怎么找? 2689159
邀请新用户注册赠送积分活动 1631508
关于科研通互助平台的介绍 1589536