Towards self-learning control of HVAC systems with the consideration of dynamic occupancy patterns: Application of model-free deep reinforcement learning

占用率 暖通空调 强化学习 计算机科学 钢筋 控制(管理) 工程类 人工智能 控制工程 建筑工程 空调 结构工程 机械工程
作者
Mohammad Esrafilian-Najafabadi,Fariborz Haghighat
出处
期刊:Building and Environment [Elsevier BV]
卷期号:226: 109747-109747 被引量:1
标识
DOI:10.1016/j.buildenv.2022.109747
摘要

This study proposes a self-learning control system that aims to learn occupancy profiles, building energy consumption patterns, and lag-time of the heating, ventilation, and air-conditioning (HVAC) systems. The control system learns by interacting with the environment with no need to develop building models and occupancy prediction models. The controller is developed based on a double deep Q-networks (DDQN) algorithm, as a model-free reinforcement learning method. The system's performance is evaluated and compared with that of a model predictive control (MPC) system under two scenarios of perfect and actual occupancy predictions based on occupancy data collected from 20 residential units. The MPC is assisted by a genetic algorithm and supervised learning models for predicting future occupancy patterns, indoor operative temperature, and building energy consumption. The results show that in the case of using perfect occupancy prediction, the self-learning controller operates almost as well as the MPC while not requiring any models. When occupancy prediction uncertainty is added to the problem, the proposed method outperforms the MPC in terms of thermal comfort by increasing the average temperature deviation and deviation period by 0.24 °C and 7.87%, respectively. However, the DDQN agent causes significant thermal comfort violations during the initial training period. The system causes up to a 2.8% longer deviation period and a 0.32 °C higher average temperature deviation, compared with the performance of the fully-trained system. • A self-learning occupancy-based predictive control system is developed. • Double deep Q-network is utilized as a model-free reinforcement learning technique. • The performance is compared with that of a model predictive control. • Thermal comfort is improved by 7.87% with no need for occupancy and building models. • Trial-and-error-based learning process causes almost 2.8% thermal discomfort.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
哈哈哈哈发布了新的文献求助20
刚刚
KANG完成签到,获得积分10
1秒前
义气黄焖排骨完成签到,获得积分10
1秒前
2秒前
如梦如画发布了新的文献求助10
2秒前
Hannes应助15902933324sjc采纳,获得10
3秒前
3秒前
3秒前
梓默完成签到 ,获得积分10
3秒前
我是老大应助Japan采纳,获得10
4秒前
彬琪完成签到,获得积分10
4秒前
红尘踏歌完成签到,获得积分10
4秒前
不忘初心发布了新的文献求助10
5秒前
18746005898完成签到 ,获得积分10
5秒前
chenkaixin完成签到,获得积分10
6秒前
WangZhen完成签到,获得积分20
7秒前
乔木木完成签到,获得积分10
7秒前
一路畅通accept完成签到,获得积分10
7秒前
潇湘学术完成签到,获得积分10
7秒前
烂漫的如冬完成签到,获得积分10
8秒前
koi发布了新的文献求助10
8秒前
10秒前
10秒前
罗小马完成签到 ,获得积分10
10秒前
11秒前
wyg117完成签到,获得积分10
12秒前
CipherSage应助Zard采纳,获得10
12秒前
13秒前
824发布了新的文献求助10
13秒前
Treasure完成签到,获得积分10
14秒前
xialuoke发布了新的文献求助10
15秒前
15秒前
15秒前
15秒前
852应助漂亮的冰菱采纳,获得10
15秒前
15秒前
Mo完成签到 ,获得积分10
16秒前
所所应助雨墨幻山采纳,获得10
17秒前
下不上文献的大越完成签到,获得积分10
17秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038619
求助须知:如何正确求助?哪些是违规求助? 3576294
关于积分的说明 11375058
捐赠科研通 3306084
什么是DOI,文献DOI怎么找? 1819374
邀请新用户注册赠送积分活动 892698
科研通“疑难数据库(出版商)”最低求助积分说明 815066