Towards self-learning control of HVAC systems with the consideration of dynamic occupancy patterns: Application of model-free deep reinforcement learning

占用率 暖通空调 强化学习 计算机科学 钢筋 控制(管理) 工程类 人工智能 控制工程 建筑工程 空调 结构工程 机械工程
作者
Mohammad Esrafilian-Najafabadi,Fariborz Haghighat
出处
期刊:Building and Environment [Elsevier BV]
卷期号:226: 109747-109747 被引量:1
标识
DOI:10.1016/j.buildenv.2022.109747
摘要

This study proposes a self-learning control system that aims to learn occupancy profiles, building energy consumption patterns, and lag-time of the heating, ventilation, and air-conditioning (HVAC) systems. The control system learns by interacting with the environment with no need to develop building models and occupancy prediction models. The controller is developed based on a double deep Q-networks (DDQN) algorithm, as a model-free reinforcement learning method. The system's performance is evaluated and compared with that of a model predictive control (MPC) system under two scenarios of perfect and actual occupancy predictions based on occupancy data collected from 20 residential units. The MPC is assisted by a genetic algorithm and supervised learning models for predicting future occupancy patterns, indoor operative temperature, and building energy consumption. The results show that in the case of using perfect occupancy prediction, the self-learning controller operates almost as well as the MPC while not requiring any models. When occupancy prediction uncertainty is added to the problem, the proposed method outperforms the MPC in terms of thermal comfort by increasing the average temperature deviation and deviation period by 0.24 °C and 7.87%, respectively. However, the DDQN agent causes significant thermal comfort violations during the initial training period. The system causes up to a 2.8% longer deviation period and a 0.32 °C higher average temperature deviation, compared with the performance of the fully-trained system. • A self-learning occupancy-based predictive control system is developed. • Double deep Q-network is utilized as a model-free reinforcement learning technique. • The performance is compared with that of a model predictive control. • Thermal comfort is improved by 7.87% with no need for occupancy and building models. • Trial-and-error-based learning process causes almost 2.8% thermal discomfort.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
姚玲发布了新的文献求助10
刚刚
1秒前
柔弱水蓉完成签到,获得积分10
1秒前
大个应助结实的半双采纳,获得10
2秒前
2秒前
lys完成签到,获得积分10
2秒前
2秒前
2秒前
可爱的函函应助啦啦啦采纳,获得10
2秒前
MgZn完成签到 ,获得积分10
2秒前
yang完成签到,获得积分20
3秒前
3秒前
yankai发布了新的文献求助30
3秒前
wanci应助hdbys采纳,获得10
3秒前
小月亮爱学习完成签到,获得积分10
3秒前
3秒前
4秒前
nevermore发布了新的文献求助10
4秒前
沫沫完成签到 ,获得积分10
6秒前
fyl发布了新的文献求助10
6秒前
6秒前
ly发布了新的文献求助10
6秒前
IanYoung71发布了新的文献求助10
7秒前
沉默凡英发布了新的文献求助10
8秒前
Axel完成签到,获得积分10
8秒前
翠甜翠甜大西瓜完成签到,获得积分10
8秒前
姚玲完成签到,获得积分10
8秒前
耿昭发布了新的文献求助10
9秒前
小王完成签到,获得积分10
10秒前
10秒前
棉花糖发布了新的文献求助10
10秒前
11秒前
张二狗完成签到,获得积分10
11秒前
12秒前
JosephLee发布了新的文献求助10
12秒前
独特凡松发布了新的文献求助10
13秒前
海盐发布了新的文献求助20
13秒前
隐形的笑白完成签到,获得积分10
14秒前
深情安青应助情殇采纳,获得10
14秒前
搜集达人应助蛋挞采纳,获得10
15秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3969458
求助须知:如何正确求助?哪些是违规求助? 3514286
关于积分的说明 11173363
捐赠科研通 3249652
什么是DOI,文献DOI怎么找? 1794948
邀请新用户注册赠送积分活动 875501
科研通“疑难数据库(出版商)”最低求助积分说明 804836