已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Towards self-learning control of HVAC systems with the consideration of dynamic occupancy patterns: Application of model-free deep reinforcement learning

占用率 暖通空调 强化学习 计算机科学 钢筋 控制(管理) 工程类 人工智能 控制工程 建筑工程 空调 结构工程 机械工程
作者
Mohammad Esrafilian-Najafabadi,Fariborz Haghighat
出处
期刊:Building and Environment [Elsevier]
卷期号:226: 109747-109747 被引量:1
标识
DOI:10.1016/j.buildenv.2022.109747
摘要

This study proposes a self-learning control system that aims to learn occupancy profiles, building energy consumption patterns, and lag-time of the heating, ventilation, and air-conditioning (HVAC) systems. The control system learns by interacting with the environment with no need to develop building models and occupancy prediction models. The controller is developed based on a double deep Q-networks (DDQN) algorithm, as a model-free reinforcement learning method. The system's performance is evaluated and compared with that of a model predictive control (MPC) system under two scenarios of perfect and actual occupancy predictions based on occupancy data collected from 20 residential units. The MPC is assisted by a genetic algorithm and supervised learning models for predicting future occupancy patterns, indoor operative temperature, and building energy consumption. The results show that in the case of using perfect occupancy prediction, the self-learning controller operates almost as well as the MPC while not requiring any models. When occupancy prediction uncertainty is added to the problem, the proposed method outperforms the MPC in terms of thermal comfort by increasing the average temperature deviation and deviation period by 0.24 °C and 7.87%, respectively. However, the DDQN agent causes significant thermal comfort violations during the initial training period. The system causes up to a 2.8% longer deviation period and a 0.32 °C higher average temperature deviation, compared with the performance of the fully-trained system. • A self-learning occupancy-based predictive control system is developed. • Double deep Q-network is utilized as a model-free reinforcement learning technique. • The performance is compared with that of a model predictive control. • Thermal comfort is improved by 7.87% with no need for occupancy and building models. • Trial-and-error-based learning process causes almost 2.8% thermal discomfort.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
快乐冷风完成签到,获得积分10
3秒前
Puan发布了新的文献求助10
3秒前
寒冷哈密瓜完成签到 ,获得积分10
4秒前
4秒前
kai0305完成签到,获得积分10
7秒前
7秒前
王志鹏完成签到 ,获得积分10
7秒前
草莓奶昔完成签到 ,获得积分10
12秒前
yummybacon发布了新的文献求助10
13秒前
雪白的面包完成签到 ,获得积分10
15秒前
落落完成签到 ,获得积分0
15秒前
16秒前
隐形曼青应助123采纳,获得10
16秒前
郁金香完成签到,获得积分10
18秒前
Jasper应助矮小的珠采纳,获得10
19秒前
19秒前
深情安青应助yummybacon采纳,获得10
23秒前
paper完成签到 ,获得积分10
24秒前
苗条的代梅完成签到,获得积分10
24秒前
云影清浅完成签到 ,获得积分10
25秒前
愉快的老三完成签到,获得积分10
26秒前
奋斗千秋完成签到,获得积分10
28秒前
29秒前
林lin发布了新的文献求助10
30秒前
科研通AI2S应助十一采纳,获得10
30秒前
dasaber完成签到,获得积分10
31秒前
31秒前
亦承梦完成签到,获得积分10
34秒前
万能图书馆应助dasaber采纳,获得10
35秒前
lisasaguan完成签到,获得积分10
35秒前
在水一方应助Ahha采纳,获得10
35秒前
35秒前
别疯发布了新的文献求助10
35秒前
所所应助自然听寒采纳,获得10
35秒前
细腻慕儿发布了新的文献求助10
36秒前
段落落完成签到 ,获得积分10
37秒前
37秒前
41秒前
院落笙歌发布了新的文献求助10
42秒前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
麻省总医院内科手册(原著第8版) (美)马克S.萨巴蒂尼 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142628
求助须知:如何正确求助?哪些是违规求助? 2793439
关于积分的说明 7806660
捐赠科研通 2449725
什么是DOI,文献DOI怎么找? 1303403
科研通“疑难数据库(出版商)”最低求助积分说明 626861
版权声明 601309