Medical resource allocation planning by integrating machine learning and optimization models

计算机科学 工作量 资源配置 机器学习 人工智能 相(物质) 运筹学 数据挖掘 计算机网络 化学 有机化学 工程类 操作系统
作者
Tasquia Mizan,Sharareh Taghipour
出处
期刊:Artificial Intelligence in Medicine [Elsevier BV]
卷期号:134: 102430-102430 被引量:14
标识
DOI:10.1016/j.artmed.2022.102430
摘要

Patients' waiting time is a major issue in the Canadian healthcare system. The planning for resource allocation impacts patients' waiting time in medicare settings. This research focuses on the reduction of patients' waiting time by providing better planning for radiological resource allocation and efficient workload distribution. Resource allocation planning is directly related to the number of patient-arrival and it is hard to predict such uncertain parameters in the future time frame. The number of patient-arrival also varies across different modalities and different timeframes which makes the patient-arrival prediction challenging. In this research, a new three-phase solution framework is proposed where a new multi-target machine learning technique is integrated with an optimization model. In the first phase, a novel Ensemble of Pruned Regressor Chain (EPRC) model is developed and trained offline to predict uncertain parameters, such as patients' arrival. The proposed model is then compared with two popular multi-target prediction methods to evaluate the model's accuracy. In the second phase, the trained model is deployed in the real-time environment to forecast patients' arrival, miss Turn Around Time (miss-TAT) rate, and probable workload count. The forecasted data is used in phase three where a new multi-objective optimization model is developed to determine workload allocation. The Weighted-sum method is used to get efficient solutions. The proposed model is deployed in a Canadian healthcare company and evaluated using real-time healthcare data. It is observed in terms of accuracy, the proposed EPRC model performed 10.81 % better compared to the other multi-target models considered in this study. It is also noticed that the forecasting results have a direct impact on the workload distribution, where the proposed model decreases the total workload by approximately 25 %. Besides, the result shows the efficient workload distribution provided by the proposed framework can reduce the average patients' waiting time by 8.17 %.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小王博士发布了新的文献求助10
刚刚
sci666发布了新的文献求助10
1秒前
独特的谷雪完成签到,获得积分10
1秒前
galeno发布了新的文献求助10
3秒前
5秒前
香蕉觅云应助FEIFEI采纳,获得10
6秒前
星辰大海应助zgnb采纳,获得10
7秒前
TIWOSS发布了新的文献求助10
10秒前
噜噜完成签到,获得积分10
11秒前
CYYDNDB完成签到 ,获得积分10
12秒前
13秒前
shain完成签到,获得积分10
14秒前
Yfvonne完成签到,获得积分10
14秒前
Nano-Su完成签到 ,获得积分10
15秒前
酷波er应助噜噜采纳,获得10
15秒前
16秒前
Erich完成签到 ,获得积分10
17秒前
科研混子发布了新的文献求助10
18秒前
Holland应助太渊采纳,获得10
18秒前
19秒前
Young完成签到,获得积分10
19秒前
酷波er应助TIWOSS采纳,获得10
19秒前
Hum0ro98完成签到,获得积分10
20秒前
仟惠发布了新的文献求助10
20秒前
22秒前
Ava应助默默的无敌采纳,获得10
22秒前
咯噔发布了新的文献求助10
25秒前
hzauhzau完成签到 ,获得积分10
25秒前
科研通AI5应助秋海棠采纳,获得10
28秒前
邓妍童发布了新的文献求助10
28秒前
今后应助蔡俊辉采纳,获得10
28秒前
33完成签到,获得积分10
28秒前
nino应助本心采纳,获得10
29秒前
HuFan1201完成签到 ,获得积分10
30秒前
31秒前
31秒前
墨川完成签到,获得积分10
31秒前
zh发布了新的文献求助10
31秒前
32秒前
小二郎应助小王博士采纳,获得10
33秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737788
求助须知:如何正确求助?哪些是违规求助? 3281410
关于积分的说明 10025130
捐赠科研通 2998123
什么是DOI,文献DOI怎么找? 1645087
邀请新用户注册赠送积分活动 782525
科研通“疑难数据库(出版商)”最低求助积分说明 749835