Low-rank constraint based dual projections learning for dimensionality reduction

子空间拓扑 投影(关系代数) 降维 约束(计算机辅助设计) 相似性(几何) 秩(图论) 计算机科学 人工智能 模式识别(心理学) 算法 还原(数学) 近端梯度法 代表(政治) 数学 人工神经网络 图像(数学) 梯度下降 政治 组合数学 政治学 法学 几何学
作者
Lin Jiang,Xiaozhao Fang,Weijun Sun,Na Han,Shaohua Teng
出处
期刊:Signal Processing [Elsevier BV]
卷期号:204: 108817-108817 被引量:9
标识
DOI:10.1016/j.sigpro.2022.108817
摘要

Subspace learning is a widely-used fundamental method for feature extraction in several fields. Existing subspace-based methods only concentrate on projecting all data into a single subspace to achieve feature extraction. However, there are not only one task of the projection matrix to handle in majority existing methods. And it always need to deal multiple tasks (e.g., dimensional reduction, data similarity preservation, etc.), leading to the over-pressure for the single subspace and degrade the accuracy of the model. In order to deal with this issue, a dual representation locality preserving projection (DRLPP for short) is presented in this paper, in which dual different projection matrices are introduced to better accomplish multiple tasks. Specially, these two projection matrices are relaxed into a flexible form to select appropriate features for preserving the important properties of data. Meanwhile, as the two matrices share the same tasks, the structure of matrices and the corresponding projected data contain intrinsic geometric structure. Then, a structural similarity term and a linear subspace reconstruction term are proposed to deeply capture the potential relationship and maintain a suitable similarity of projected data. Moreover, a low-rank constraint is imposed to preserve the similarity between the two matrices and reduce the noise disturbance. Finally, an iterative algorithm with fast convergence is proposed to solve the corresponding optimization problem. Experimental results on five datasets demonstrate the effectiveness of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
标致若风应助bill采纳,获得10
2秒前
kilig_r完成签到,获得积分10
5秒前
李健的小迷弟应助fish采纳,获得10
6秒前
7秒前
7秒前
小酒窝周周完成签到 ,获得积分10
8秒前
windows完成签到,获得积分10
8秒前
zhaohu47完成签到,获得积分10
9秒前
冷酷青文关注了科研通微信公众号
9秒前
10秒前
小九没烦恼完成签到,获得积分10
11秒前
tyZhang发布了新的文献求助10
12秒前
13秒前
科研通AI6应助lxl采纳,获得10
15秒前
趣多多发布了新的文献求助10
15秒前
乐乐应助superspace采纳,获得10
15秒前
16秒前
orixero应助颜十三采纳,获得10
16秒前
mingyu完成签到,获得积分10
16秒前
呢呢完成签到,获得积分10
17秒前
JINJIN发布了新的文献求助10
17秒前
Criminology34应助干净怀寒采纳,获得10
19秒前
19秒前
杨若寒完成签到,获得积分20
20秒前
20秒前
磐xst完成签到 ,获得积分10
20秒前
21秒前
Anoxia发布了新的文献求助10
22秒前
呢呢发布了新的文献求助10
24秒前
杨若寒发布了新的文献求助10
25秒前
一小揪儿完成签到,获得积分10
26秒前
64658应助Anoxia采纳,获得10
27秒前
Ava应助Anoxia采纳,获得10
27秒前
可乐完成签到 ,获得积分10
27秒前
27秒前
30秒前
30秒前
taur关注了科研通微信公众号
31秒前
桐桐应助钉钉采纳,获得10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5258672
求助须知:如何正确求助?哪些是违规求助? 4420629
关于积分的说明 13760748
捐赠科研通 4294297
什么是DOI,文献DOI怎么找? 2356344
邀请新用户注册赠送积分活动 1352673
关于科研通互助平台的介绍 1313526