Low-rank constraint based dual projections learning for dimensionality reduction

子空间拓扑 投影(关系代数) 降维 约束(计算机辅助设计) 相似性(几何) 秩(图论) 计算机科学 人工智能 模式识别(心理学) 算法 还原(数学) 近端梯度法 代表(政治) 数学 人工神经网络 图像(数学) 梯度下降 政治 组合数学 政治学 法学 几何学
作者
Lin Jiang,Xiaozhao Fang,Weijun Sun,Na Han,Shaohua Teng
出处
期刊:Signal Processing [Elsevier BV]
卷期号:204: 108817-108817 被引量:9
标识
DOI:10.1016/j.sigpro.2022.108817
摘要

Subspace learning is a widely-used fundamental method for feature extraction in several fields. Existing subspace-based methods only concentrate on projecting all data into a single subspace to achieve feature extraction. However, there are not only one task of the projection matrix to handle in majority existing methods. And it always need to deal multiple tasks (e.g., dimensional reduction, data similarity preservation, etc.), leading to the over-pressure for the single subspace and degrade the accuracy of the model. In order to deal with this issue, a dual representation locality preserving projection (DRLPP for short) is presented in this paper, in which dual different projection matrices are introduced to better accomplish multiple tasks. Specially, these two projection matrices are relaxed into a flexible form to select appropriate features for preserving the important properties of data. Meanwhile, as the two matrices share the same tasks, the structure of matrices and the corresponding projected data contain intrinsic geometric structure. Then, a structural similarity term and a linear subspace reconstruction term are proposed to deeply capture the potential relationship and maintain a suitable similarity of projected data. Moreover, a low-rank constraint is imposed to preserve the similarity between the two matrices and reduce the noise disturbance. Finally, an iterative algorithm with fast convergence is proposed to solve the corresponding optimization problem. Experimental results on five datasets demonstrate the effectiveness of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
SHAO应助伶俐天抒采纳,获得10
1秒前
xy完成签到 ,获得积分10
1秒前
CN_PH发布了新的文献求助30
2秒前
2秒前
害怕的萝发布了新的文献求助30
3秒前
3秒前
Ava应助飞天817采纳,获得10
4秒前
葳蕤发布了新的文献求助10
4秒前
第八维发布了新的文献求助10
4秒前
QIUJIEYANG发布了新的文献求助10
4秒前
友好酸奶发布了新的文献求助10
4秒前
5秒前
华仔应助一剑温柔采纳,获得10
5秒前
汉堡包应助小蚊子采纳,获得10
5秒前
完美世界应助lamy采纳,获得10
5秒前
6秒前
6秒前
6秒前
7秒前
jzhou88驳回了SHAO应助
8秒前
8秒前
8秒前
搜集达人应助二十五采纳,获得10
9秒前
9秒前
迷人成协完成签到,获得积分10
9秒前
旺德福发布了新的文献求助10
9秒前
something发布了新的文献求助10
10秒前
杨阳洋发布了新的文献求助10
10秒前
阿海完成签到,获得积分10
10秒前
10秒前
3333橙发布了新的文献求助10
11秒前
12秒前
13秒前
阿翠发布了新的文献求助10
13秒前
daifei发布了新的文献求助10
14秒前
lee完成签到,获得积分10
14秒前
友好酸奶完成签到,获得积分10
14秒前
14秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979242
求助须知:如何正确求助?哪些是违规求助? 3523187
关于积分的说明 11216570
捐赠科研通 3260615
什么是DOI,文献DOI怎么找? 1800151
邀请新用户注册赠送积分活动 878854
科研通“疑难数据库(出版商)”最低求助积分说明 807099