Hydrogen production from methane via liquid phase microwave plasma: A deoxidation strategy

甲烷 制氢 等离子体 液相 微波食品加热 生产(经济) 相(物质) 材料科学 化学 环境科学 化学工程 废物管理 工程类 有机化学 物理 热力学 经济 宏观经济学 电信 量子力学
作者
Qiuying Wang,Xiaomei Zhu,Bing Sun,Zhi Li,Jinglin Liu
出处
期刊:Applied Energy [Elsevier BV]
卷期号:328: 120200-120200 被引量:7
标识
DOI:10.1016/j.apenergy.2022.120200
摘要

• Effect of dissolved oxygen (DO) on CH 4 reforming was studied by liquid discharge. • Reducing DO can improve the discharge stability. • DO can affect the relative intensity of radicals generated in the discharge. • Reducing DO can increase the hydrogen yield and hydrogen production efficiency. In this paper, in order to improve hydrogen production, the effect of dissolved oxygen (DO) on methane (CH 4 ) reforming was studied by liquid phase microwave discharge firstly. DO was reduced by deducing pressure and gas replacement, and the reaction mechanism was researched by radical detection. It was revealed that reducing DO can improve hydrogen (H 2 ) yield and H 2 selectivity and energy efficiency of hydrogen production. When microwave power was 900 W and the DO was decreased from 4.82 mg/L to 0.65 mg/L, the production and selectivity of H 2 increased by 21.3 % and 22.6 % respectively, and the energy efficiency of hydrogen production increased by 33.1 %. Through the study on the characteristics of discharge radicals, it was concluded that ∙H extraction and ∙H coupling reaction and ∙OH oxidation ∙CH X are the main ways to produce hydrogen. The existence of DO affects the formation of H 2 by limiting the decomposition of water molecules. In addition, the reduction of DO can improve the stability of discharge. These results indicate that reducing the DO can be a simple, effective and energy conservation method to increase the selectivity of target products in the liquid phase discharge reforming of CH 4 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科目三应助xxdefaj采纳,获得10
刚刚
可靠的初雪完成签到 ,获得积分10
2秒前
英俊的铭应助wangwenzhe采纳,获得10
2秒前
Lucia给Lucia的求助进行了留言
3秒前
1313131发布了新的文献求助10
3秒前
CSII发布了新的文献求助10
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
田様应助科研通管家采纳,获得10
3秒前
Hello应助科研通管家采纳,获得10
3秒前
烟花应助科研通管家采纳,获得10
4秒前
煜钧发布了新的文献求助10
4秒前
彭于晏应助科研通管家采纳,获得10
4秒前
Hello应助科研通管家采纳,获得10
4秒前
FashionBoy应助科研通管家采纳,获得50
4秒前
4秒前
Jasper应助科研通管家采纳,获得10
4秒前
4秒前
orixero应助科研通管家采纳,获得80
4秒前
4秒前
今后应助科研通管家采纳,获得30
4秒前
田様应助科研通管家采纳,获得10
4秒前
桐桐应助科研通管家采纳,获得10
5秒前
缓慢煎蛋应助科研通管家采纳,获得20
5秒前
共享精神应助科研通管家采纳,获得10
5秒前
Lucas应助科研通管家采纳,获得10
5秒前
彭于晏应助科研通管家采纳,获得10
5秒前
orixero应助科研通管家采纳,获得10
5秒前
充电宝应助科研通管家采纳,获得10
5秒前
CodeCraft应助科研通管家采纳,获得30
5秒前
慕青应助科研通管家采纳,获得10
5秒前
5秒前
拓跋箴发布了新的文献求助30
6秒前
量子星尘发布了新的文献求助10
6秒前
7秒前
上官若男应助鱼海寻俞采纳,获得10
7秒前
非言墨语完成签到,获得积分10
8秒前
shhoing应助今何在采纳,获得10
8秒前
8秒前
wwe完成签到,获得积分10
10秒前
王路飞完成签到,获得积分10
10秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The Insulin Resistance Epidemic: Uncovering the Root Cause of Chronic Disease  500
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3662771
求助须知:如何正确求助?哪些是违规求助? 3223591
关于积分的说明 9752272
捐赠科研通 2933546
什么是DOI,文献DOI怎么找? 1606137
邀请新用户注册赠送积分活动 758279
科研通“疑难数据库(出版商)”最低求助积分说明 734771