Formation of delta-mannitol by co-spray drying: enhancing the tabletability of paracetamol/mannitol formulations

甘露醇 压片 喷雾干燥 材料科学 极限抗拉强度 化学工程 化学 色谱法 复合材料 有机化学 工程类
作者
E. De Pauw,Chris Vervaet,Valérie Vanhoorne
出处
期刊:Journal of Drug Delivery Science and Technology [Elsevier]
卷期号:77: 103907-103907 被引量:6
标识
DOI:10.1016/j.jddst.2022.103907
摘要

δ-mannitol is a metastable polymorph of mannitol, known for its superior tableting properties. However, there is no easy, reproducible and scalable production method for δ-mannitol. It was evaluated whether δ-mannitol could be formed via co-spray drying with an API exhibiting tabletability issues, to improve the API tabletability in a one-step process prior to compaction. Aqueous suspensions with paracetamol and β-mannitol were co-spray dried. Raman spectroscopy was used to identify the mannitol polymorphs. In these formulations, paracetamol was the key factor to allow the formation of δ-mannitol since no traces of the δ-polymorph could be detected after spray drying a pure mannitol feed. The presence of δ-mannitol after co-spray drying was confirmed even for low paracetamol/mannitol ratios (1:99). The δ-mannitol content varied depending on the process drying parameters, predominantly by the airflow. A lower airflow promoted the formation of δ-mannitol, while more α-mannitol was formed when applying a higher airflow. The starting material, β-mannitol, was often no longer detectable by Raman spectroscopy. The tabletability of the spray dried powders clearly improved in association with the δ-mannitol concentration. The co-processed powders showed superior tabletability in comparison with physical mixtures of the starting materials. Harder tablets with a maximal tensile strength of 2.9 MPa at a main compression pressure of 247 MPa were achieved.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
科研通AI5应助wangyanwxy采纳,获得10
2秒前
36456657应助豆dou采纳,获得10
2秒前
3秒前
3秒前
4秒前
buno应助jy采纳,获得10
5秒前
paparazzi221发布了新的文献求助10
6秒前
田生完成签到,获得积分10
6秒前
勤劳的忆寒应助Kiyotaka采纳,获得30
6秒前
6秒前
爆米花应助towerman采纳,获得10
7秒前
羊笨笨完成签到 ,获得积分10
7秒前
8秒前
光亮芷天完成签到,获得积分10
8秒前
8秒前
9秒前
粗犷的问夏完成签到,获得积分10
10秒前
知行合一完成签到 ,获得积分10
11秒前
11秒前
12秒前
李爱国应助晨曦采纳,获得10
13秒前
0128lun发布了新的文献求助10
13秒前
phd发布了新的文献求助10
14秒前
君无名完成签到 ,获得积分10
14秒前
经年发布了新的文献求助10
14秒前
QXR完成签到,获得积分10
15秒前
豆dou完成签到,获得积分10
15秒前
Dddd发布了新的文献求助10
15秒前
HCl完成签到,获得积分10
16秒前
16秒前
17秒前
17秒前
18秒前
18秒前
Hollen完成签到 ,获得积分10
19秒前
慕青应助学术蠕虫采纳,获得10
20秒前
20秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808