An unsupervised machine learning based ground motion selection method for computationally efficient estimation of seismic fragility

脆弱性 背景(考古学) 增量动力分析 计算机科学 地震灾害 集合(抽象数据类型) 工程类 数据挖掘 人工智能 地震动 地理 结构工程 土木工程 考古 物理化学 化学 程序设计语言
作者
Jinjun Hu,Bali Liu,Lili Xie
出处
期刊:Earthquake Engineering & Structural Dynamics [Wiley]
卷期号:52 (8): 2360-2383 被引量:5
标识
DOI:10.1002/eqe.3793
摘要

Abstract In the context of performance‐based earthquake engineering (PBEE), response‐history analysis is currently considered an analytical tool for developing fragility curves. Typically, this involves subjecting a structural system to a large number of ground motion records (GMRs) representing seismic hazards at a site of interest and may be a time‐consuming task. To address this computational challenge, this study proposes a method for selecting a representative subset of GMRs that enables the reproduction of the fragility curve of the general GMR set. In this method, dimension reduction techniques are used to preferentially extract the principal features of earthquake intensity measures, which are applied to construct the feature space. Then, the divisive hierarchical clustering technique is applied to the feature space to obtain a subset of GMRs from the general set until the fragility curve converges. The performance of the proposed method is successfully demonstrated through various numerical examples that include a wide class of single‐degree‐of‐freedom systems and two steel‐frame buildings. The results confirm that the seismic hazard at a given site represented by a general GMR set can be covered in structural fragility estimation using a representative subset of GMRs selected based on the proposed method. The proposed method could contribute to significantly reducing the computational costs for structural fragility estimation without compromising the accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
陈曦发布了新的文献求助10
2秒前
moon关注了科研通微信公众号
2秒前
lh23发布了新的文献求助10
3秒前
hhh发布了新的文献求助10
4秒前
共享精神应助海比天蓝采纳,获得10
4秒前
5秒前
方方完成签到,获得积分10
5秒前
Rondab应助tjfwg采纳,获得10
5秒前
奥特超曼应助浮生采纳,获得10
5秒前
7秒前
慈祥的水池完成签到,获得积分10
7秒前
李健应助可靠的访冬采纳,获得10
9秒前
9秒前
11秒前
星辰大海应助MEDwhy采纳,获得10
11秒前
聪明夏山应助冷傲山彤采纳,获得10
11秒前
12秒前
黑色土豆发布了新的文献求助10
12秒前
kong发布了新的文献求助10
12秒前
香蕉觅云应助bbh采纳,获得10
13秒前
今后应助bbh采纳,获得10
13秒前
丘比特应助bbh采纳,获得10
13秒前
小马甲应助bbh采纳,获得10
13秒前
kd完成签到,获得积分10
14秒前
文静湘发布了新的文献求助20
14秒前
15秒前
15秒前
Peveril完成签到,获得积分10
16秒前
lh23完成签到,获得积分10
17秒前
Owen应助落寞振家采纳,获得10
17秒前
传奇3应助kanwenxian采纳,获得10
17秒前
17秒前
Katherine发布了新的文献求助10
18秒前
落榜美术生完成签到,获得积分10
19秒前
19秒前
19秒前
20秒前
莫言发布了新的文献求助10
22秒前
moon发布了新的文献求助10
22秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989589
求助须知:如何正确求助?哪些是违规求助? 3531795
关于积分的说明 11254881
捐赠科研通 3270329
什么是DOI,文献DOI怎么找? 1804966
邀请新用户注册赠送积分活动 882136
科研通“疑难数据库(出版商)”最低求助积分说明 809176