Low‐dose CT denoising with a high‐level feature refinement and dynamic convolution network

特征(语言学) 计算机科学 降噪 卷积(计算机科学) 人工智能 核(代数) 噪音(视频) 模式识别(心理学) 投影(关系代数) 医学影像学 计算机视觉 算法 图像(数学) 人工神经网络 数学 哲学 语言学 组合数学
作者
Sihan Yang,Qiang Pu,Chunting Lei,Qiao Zhang,Seunggil Jeon,Xiaomin Yang
出处
期刊:Medical Physics [Wiley]
卷期号:50 (6): 3597-3611 被引量:2
标识
DOI:10.1002/mp.16175
摘要

Since the potential health risks of the radiation generated by computer tomography (CT), concerns have been expressed on reducing the radiation dose. However, low-dose CT (LDCT) images contain complex noise and artifacts, bringing uncertainty to medical diagnosis.Existing deep learning (DL)-based denoising methods are difficult to fully exploit hierarchical features of different levels, limiting the effect of denoising. Moreover, the standard convolution kernel is parameter sharing and cannot be adjusted dynamically with input change. This paper proposes an LDCT denoising network using high-level feature refinement and multiscale dynamic convolution to mitigate these problems.The dual network structure proposed in this paper consists of the feature refinement network (FRN) and the dynamic perception network (DPN). The FDN extracts features of different levels through residual dense connections. The high-level hierarchical information is transmitted to DPN to improve the low-level representations. In DPN, the two networks' features are fused by local channel attention (LCA) to assign weights in different regions and handle CT images' delicate tissues better. Then, the dynamic dilated convolution (DDC) with multibranch and multiscale receptive fields is proposed to enhance the expression and processing ability of the denoising network. The experiments were trained and tested on the dataset "NIH-AAPM-Mayo Clinic Low-Dose CT Grand Challenge," consisting of 10 anonymous patients with normal-dose abdominal CT and LDCT at 25% dose. In addition, external validation was performed on the dataset "Low Dose CT Image and Projection Data," which included 300 chest CT images at 10% dose and 300 head CT images at 25% dose.Proposed method compared with seven mainstream LDCT denoising algorithms. On the Mayo dataset, achieved peak signal-to-noise ratio (PSNR): 46.3526 dB (95% CI: 46.0121-46.6931 dB) and structural similarity (SSIM): 0.9844 (95% CI: 0.9834-0.9854). Compared with LDCT, the average increase was 3.4159 dB and 0.0239, respectively. The results are relatively optimal and statistically significant compared with other methods. In external verification, our algorithm can cope well with ultra-low-dose chest CT images at 10% dose and obtain PSNR: 28.6130 (95% CI: 28.1680-29.0580 dB) and SSIM: 0.7201 (95% CI: 0.7101-0.7301). Compared with LDCT, PSNR/SSIM is increased by 3.6536dB and 0.2132, respectively. In addition, the quality of LDCT can also be improved in head CT denoising.This paper proposes a DL-based LDCT denoising algorithm, which utilizes high-level features and multiscale dynamic convolution to optimize the network's denoising effect. This method can realize speedy denoising and performs well in noise suppression and detail preservation, which can be helpful for the diagnosis of LDCT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
搞怪便当完成签到,获得积分10
2秒前
3秒前
sissiarno应助automan采纳,获得30
4秒前
4秒前
ChuNG发布了新的文献求助10
7秒前
时尚的冰棍儿完成签到 ,获得积分10
7秒前
11秒前
12秒前
12秒前
陈七七发布了新的文献求助30
13秒前
滕永杰完成签到,获得积分10
13秒前
飞翔的梦完成签到,获得积分10
15秒前
眯眯眼的未来完成签到,获得积分10
17秒前
19秒前
科研小白发布了新的文献求助10
22秒前
Yzz完成签到,获得积分10
26秒前
小马甲应助落叶采纳,获得10
29秒前
YHF2完成签到,获得积分10
31秒前
34秒前
35秒前
鲸鱼完成签到,获得积分10
35秒前
慕青应助斑比采纳,获得10
35秒前
yuuzy完成签到 ,获得积分10
39秒前
JackHYH完成签到 ,获得积分10
40秒前
00000发布了新的文献求助30
41秒前
Akim应助忧郁的静柏采纳,获得10
41秒前
13508104971发布了新的文献求助10
41秒前
43秒前
45秒前
13508104971完成签到,获得积分10
45秒前
冰bing发布了新的文献求助10
45秒前
dakdake大可完成签到,获得积分10
48秒前
HAHAHAHA发布了新的文献求助10
50秒前
Lucas应助科研小白采纳,获得10
50秒前
沈吃吃发布了新的文献求助10
51秒前
顺其自然完成签到 ,获得积分10
55秒前
57秒前
ke科研小白完成签到,获得积分10
57秒前
59秒前
科研小白完成签到,获得积分20
1分钟前
高分求助中
Востребованный временем 2500
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 1000
Kidney Transplantation: Principles and Practice 1000
The Restraining Hand: Captivity for Christ in China 500
Encyclopedia of Mental Health Reference Work 400
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Mercury and Silver Mining in the Colonial Atlantic 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3373804
求助须知:如何正确求助?哪些是违规求助? 2990999
关于积分的说明 8743380
捐赠科研通 2674694
什么是DOI,文献DOI怎么找? 1465301
科研通“疑难数据库(出版商)”最低求助积分说明 677816
邀请新用户注册赠送积分活动 669337