A Federated Learning Backdoor Attack Defense Method Based on Dual Attention Mechanism

后门 计算机科学 人工智能 水准点(测量) 任务(项目管理) 边缘设备 深度学习 人工神经网络 机器学习 对偶(语法数字) 数据挖掘 计算机安全 操作系统 文学类 大地测量学 艺术 经济 云计算 管理 地理
作者
Yan Jin,Yingchi Mao,Hongguang Nie,Zijian Tu,Ji Huang
标识
DOI:10.1109/bigdataservice55688.2022.00030
摘要

As a distributed machine learning paradigm, federated learning allows clients to collaboratively train models without sharing their private data, effectively solving data privacy issues in edge computing scenarios. However, recent studies have shown that neural network models in federated learning are vulnerable to backdoor attacks, which make the global model give wrong inference results in a high-confidence manner, such as recognizing stop signs as speed limit signs in the image classification task. This will have serious consequences. Aiming at the problem that the existing federated learning defense methods take a long time to compute and cannot destroy the matching relationship between triggers and backdoors, a federated learning backdoor attack defense based on dual attention mechanism (FDDAM) is proposed. The model weights are dynamically adjusted during training process, no additional models are required, and the calculation time is shorter. First, in order for the model to ignore triggers, the enhancement on image semantics is performed and then build channel attention map. Second, in order to destroy the matching relationship between triggers and backdoors, a feature map space transformation network is constructed. Finally, in order to improve the defense success rate, the channel attention map and the spatial attention map are weighted to construct a dual attention network. Experiments with FDDAM on image classification datasets show an average increase of 1.68% and 3.11% in model accuracy and defense success rate, and an average reduction of 1.85 times in computation time compared to the benchmark method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
林屿溪发布了新的文献求助10
刚刚
毛77发布了新的文献求助30
刚刚
刚刚
1秒前
武当张二丰完成签到,获得积分10
1秒前
小二郎应助落后的哈密瓜采纳,获得10
1秒前
1r完成签到,获得积分10
1秒前
顾矜应助艾雪采纳,获得10
2秒前
不想做实验完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
3秒前
abcd发布了新的文献求助30
3秒前
小小关注了科研通微信公众号
3秒前
机智的思山完成签到 ,获得积分10
3秒前
3秒前
4秒前
4秒前
思源应助月月吖采纳,获得30
4秒前
李爱国应助Garlic采纳,获得30
4秒前
简单的沛蓝完成签到 ,获得积分10
5秒前
5秒前
深情安青应助wei采纳,获得10
5秒前
5秒前
6秒前
千诺完成签到 ,获得积分10
6秒前
7秒前
7秒前
Chen完成签到,获得积分20
7秒前
7秒前
小旋风发布了新的文献求助20
8秒前
文龙完成签到,获得积分20
8秒前
ZSC完成签到,获得积分10
8秒前
劳伦斯发布了新的文献求助10
8秒前
lee完成签到 ,获得积分10
9秒前
9秒前
打打应助jackma1采纳,获得10
9秒前
leeza发布了新的文献求助10
9秒前
李健的小迷弟应助leisj采纳,获得10
10秒前
anubisi完成签到,获得积分10
10秒前
搜集达人应助花陵采纳,获得10
10秒前
Decheng_xiao发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5719543
求助须知:如何正确求助?哪些是违规求助? 5256663
关于积分的说明 15288927
捐赠科研通 4869380
什么是DOI,文献DOI怎么找? 2614754
邀请新用户注册赠送积分活动 1564750
关于科研通互助平台的介绍 1521972