A Federated Learning Backdoor Attack Defense Method Based on Dual Attention Mechanism

后门 计算机科学 人工智能 水准点(测量) 任务(项目管理) 边缘设备 深度学习 人工神经网络 机器学习 对偶(语法数字) 数据挖掘 计算机安全 操作系统 文学类 大地测量学 艺术 经济 云计算 管理 地理
作者
Yan Jin,Yingchi Mao,Hongguang Nie,Zijian Tu,Ji Huang
标识
DOI:10.1109/bigdataservice55688.2022.00030
摘要

As a distributed machine learning paradigm, federated learning allows clients to collaboratively train models without sharing their private data, effectively solving data privacy issues in edge computing scenarios. However, recent studies have shown that neural network models in federated learning are vulnerable to backdoor attacks, which make the global model give wrong inference results in a high-confidence manner, such as recognizing stop signs as speed limit signs in the image classification task. This will have serious consequences. Aiming at the problem that the existing federated learning defense methods take a long time to compute and cannot destroy the matching relationship between triggers and backdoors, a federated learning backdoor attack defense based on dual attention mechanism (FDDAM) is proposed. The model weights are dynamically adjusted during training process, no additional models are required, and the calculation time is shorter. First, in order for the model to ignore triggers, the enhancement on image semantics is performed and then build channel attention map. Second, in order to destroy the matching relationship between triggers and backdoors, a feature map space transformation network is constructed. Finally, in order to improve the defense success rate, the channel attention map and the spatial attention map are weighted to construct a dual attention network. Experiments with FDDAM on image classification datasets show an average increase of 1.68% and 3.11% in model accuracy and defense success rate, and an average reduction of 1.85 times in computation time compared to the benchmark method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
俭朴夜雪发布了新的文献求助10
刚刚
1秒前
1秒前
1秒前
1秒前
1秒前
量子星尘发布了新的文献求助10
1秒前
小李发布了新的文献求助10
1秒前
2秒前
微识发布了新的文献求助10
2秒前
3秒前
顾矜应助申燕婷采纳,获得10
3秒前
stt发布了新的文献求助10
3秒前
张文静发布了新的文献求助10
3秒前
4秒前
魔幻沛菡发布了新的文献求助10
4秒前
4秒前
田様应助overlood采纳,获得10
4秒前
深情安青应助husi采纳,获得10
4秒前
Gavin发布了新的文献求助10
5秒前
大白发布了新的文献求助10
5秒前
gxj发布了新的文献求助10
6秒前
6秒前
T1ny完成签到,获得积分10
6秒前
肉肉的小屋完成签到,获得积分10
6秒前
7秒前
7秒前
cantaloupe完成签到,获得积分10
7秒前
7秒前
helinahs完成签到 ,获得积分10
7秒前
jimoon发布了新的文献求助10
8秒前
8秒前
庄艺斌发布了新的文献求助10
8秒前
8秒前
8秒前
大模型应助酷炫的可乐采纳,获得10
9秒前
10秒前
大_pan发布了新的文献求助10
10秒前
10秒前
童博发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5531594
求助须知:如何正确求助?哪些是违规求助? 4620404
关于积分的说明 14573182
捐赠科研通 4560142
什么是DOI,文献DOI怎么找? 2498713
邀请新用户注册赠送积分活动 1478629
关于科研通互助平台的介绍 1449993