A Federated Learning Backdoor Attack Defense Method Based on Dual Attention Mechanism

后门 计算机科学 人工智能 水准点(测量) 任务(项目管理) 边缘设备 深度学习 人工神经网络 机器学习 对偶(语法数字) 数据挖掘 计算机安全 操作系统 文学类 大地测量学 艺术 经济 云计算 管理 地理
作者
Yan Jin,Yingchi Mao,Hongguang Nie,Zijian Tu,Ji Huang
标识
DOI:10.1109/bigdataservice55688.2022.00030
摘要

As a distributed machine learning paradigm, federated learning allows clients to collaboratively train models without sharing their private data, effectively solving data privacy issues in edge computing scenarios. However, recent studies have shown that neural network models in federated learning are vulnerable to backdoor attacks, which make the global model give wrong inference results in a high-confidence manner, such as recognizing stop signs as speed limit signs in the image classification task. This will have serious consequences. Aiming at the problem that the existing federated learning defense methods take a long time to compute and cannot destroy the matching relationship between triggers and backdoors, a federated learning backdoor attack defense based on dual attention mechanism (FDDAM) is proposed. The model weights are dynamically adjusted during training process, no additional models are required, and the calculation time is shorter. First, in order for the model to ignore triggers, the enhancement on image semantics is performed and then build channel attention map. Second, in order to destroy the matching relationship between triggers and backdoors, a feature map space transformation network is constructed. Finally, in order to improve the defense success rate, the channel attention map and the spatial attention map are weighted to construct a dual attention network. Experiments with FDDAM on image classification datasets show an average increase of 1.68% and 3.11% in model accuracy and defense success rate, and an average reduction of 1.85 times in computation time compared to the benchmark method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
roger完成签到,获得积分10
1秒前
科研蜗牛完成签到,获得积分10
1秒前
abcd_1067完成签到,获得积分10
3秒前
cici完成签到 ,获得积分10
4秒前
王金娥完成签到,获得积分10
8秒前
8秒前
Urusaiina完成签到,获得积分10
9秒前
用行舍藏完成签到,获得积分10
9秒前
9秒前
量子星尘发布了新的文献求助10
11秒前
11秒前
旺仔同学完成签到,获得积分10
13秒前
bkagyin应助窗外风雨阑珊采纳,获得10
13秒前
99发布了新的文献求助10
15秒前
aikeyan完成签到 ,获得积分10
15秒前
灰灰发布了新的文献求助10
16秒前
文6完成签到 ,获得积分10
18秒前
苏信怜完成签到,获得积分10
19秒前
细心的安双完成签到 ,获得积分10
20秒前
科研通AI6应助科研通管家采纳,获得10
20秒前
科研通AI2S应助科研通管家采纳,获得10
20秒前
科研通AI6应助科研通管家采纳,获得10
20秒前
科研通AI6应助科研通管家采纳,获得10
20秒前
科研通AI6应助科研通管家采纳,获得10
20秒前
彭于晏应助科研通管家采纳,获得10
20秒前
Fiona完成签到 ,获得积分10
20秒前
科研通AI6应助科研通管家采纳,获得10
20秒前
沉静胜完成签到,获得积分10
20秒前
科研通AI6应助科研通管家采纳,获得10
20秒前
科研通AI6应助科研通管家采纳,获得10
20秒前
科研通AI2S应助科研通管家采纳,获得10
20秒前
arniu2008应助科研通管家采纳,获得10
21秒前
小药童应助科研通管家采纳,获得10
21秒前
21秒前
赘婿应助科研通管家采纳,获得10
21秒前
22秒前
Yangyang完成签到,获得积分10
22秒前
小玉完成签到,获得积分10
22秒前
倪好完成签到,获得积分10
22秒前
LL完成签到,获得积分10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Digitizing Enlightenment: Digital Humanities and the Transformation of Eighteenth-Century Studies 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5671607
求助须知:如何正确求助?哪些是违规求助? 4920377
关于积分的说明 15135208
捐赠科研通 4830460
什么是DOI,文献DOI怎么找? 2587117
邀请新用户注册赠送积分活动 1540692
关于科研通互助平台的介绍 1499071