A Federated Learning Backdoor Attack Defense Method Based on Dual Attention Mechanism

后门 计算机科学 人工智能 水准点(测量) 任务(项目管理) 边缘设备 深度学习 人工神经网络 机器学习 对偶(语法数字) 数据挖掘 计算机安全 操作系统 文学类 大地测量学 艺术 经济 云计算 管理 地理
作者
Yan Jin,Yingchi Mao,Hongguang Nie,Zijian Tu,Ji Huang
标识
DOI:10.1109/bigdataservice55688.2022.00030
摘要

As a distributed machine learning paradigm, federated learning allows clients to collaboratively train models without sharing their private data, effectively solving data privacy issues in edge computing scenarios. However, recent studies have shown that neural network models in federated learning are vulnerable to backdoor attacks, which make the global model give wrong inference results in a high-confidence manner, such as recognizing stop signs as speed limit signs in the image classification task. This will have serious consequences. Aiming at the problem that the existing federated learning defense methods take a long time to compute and cannot destroy the matching relationship between triggers and backdoors, a federated learning backdoor attack defense based on dual attention mechanism (FDDAM) is proposed. The model weights are dynamically adjusted during training process, no additional models are required, and the calculation time is shorter. First, in order for the model to ignore triggers, the enhancement on image semantics is performed and then build channel attention map. Second, in order to destroy the matching relationship between triggers and backdoors, a feature map space transformation network is constructed. Finally, in order to improve the defense success rate, the channel attention map and the spatial attention map are weighted to construct a dual attention network. Experiments with FDDAM on image classification datasets show an average increase of 1.68% and 3.11% in model accuracy and defense success rate, and an average reduction of 1.85 times in computation time compared to the benchmark method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiaolizi发布了新的文献求助10
1秒前
此时此刻发布了新的文献求助30
1秒前
nick发布了新的文献求助10
3秒前
3秒前
liwen完成签到,获得积分10
3秒前
4秒前
abcd发布了新的文献求助10
4秒前
5秒前
5秒前
6秒前
在水一方应助果粒橙橙子采纳,获得10
7秒前
8秒前
笑一七发布了新的文献求助10
9秒前
15359015265发布了新的文献求助20
10秒前
10秒前
10秒前
隐形曼青应助nick采纳,获得10
11秒前
量子星尘发布了新的文献求助10
11秒前
13秒前
量子星尘发布了新的文献求助10
13秒前
阿q完成签到,获得积分10
13秒前
15秒前
15秒前
17秒前
jingsihan完成签到,获得积分10
17秒前
17秒前
zbzfp发布了新的文献求助10
18秒前
18秒前
Hengjian_Pu完成签到,获得积分10
18秒前
19秒前
儒雅的十八完成签到,获得积分10
19秒前
王王应助欣喜从波采纳,获得30
21秒前
NexusExplorer应助RC_Wang采纳,获得10
22秒前
翁依波发布了新的文献求助10
23秒前
彭于晏应助学习采纳,获得10
23秒前
25秒前
zwq发布了新的文献求助10
25秒前
26秒前
wanci应助季末默相依采纳,获得10
26秒前
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5778469
求助须知:如何正确求助?哪些是违规求助? 5641573
关于积分的说明 15449483
捐赠科研通 4910143
什么是DOI,文献DOI怎么找? 2642399
邀请新用户注册赠送积分活动 1590239
关于科研通互助平台的介绍 1544574