A Federated Learning Backdoor Attack Defense Method Based on Dual Attention Mechanism

后门 计算机科学 人工智能 水准点(测量) 任务(项目管理) 边缘设备 深度学习 人工神经网络 机器学习 对偶(语法数字) 数据挖掘 计算机安全 操作系统 文学类 大地测量学 艺术 经济 云计算 管理 地理
作者
Yan Jin,Yingchi Mao,Hongguang Nie,Zijian Tu,Ji Huang
标识
DOI:10.1109/bigdataservice55688.2022.00030
摘要

As a distributed machine learning paradigm, federated learning allows clients to collaboratively train models without sharing their private data, effectively solving data privacy issues in edge computing scenarios. However, recent studies have shown that neural network models in federated learning are vulnerable to backdoor attacks, which make the global model give wrong inference results in a high-confidence manner, such as recognizing stop signs as speed limit signs in the image classification task. This will have serious consequences. Aiming at the problem that the existing federated learning defense methods take a long time to compute and cannot destroy the matching relationship between triggers and backdoors, a federated learning backdoor attack defense based on dual attention mechanism (FDDAM) is proposed. The model weights are dynamically adjusted during training process, no additional models are required, and the calculation time is shorter. First, in order for the model to ignore triggers, the enhancement on image semantics is performed and then build channel attention map. Second, in order to destroy the matching relationship between triggers and backdoors, a feature map space transformation network is constructed. Finally, in order to improve the defense success rate, the channel attention map and the spatial attention map are weighted to construct a dual attention network. Experiments with FDDAM on image classification datasets show an average increase of 1.68% and 3.11% in model accuracy and defense success rate, and an average reduction of 1.85 times in computation time compared to the benchmark method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
许你星光熠完成签到,获得积分10
刚刚
凡迪亚比应助yxy采纳,获得10
1秒前
Hexagram发布了新的文献求助10
1秒前
1秒前
4秒前
5秒前
星辰大海应助懒顾采纳,获得10
5秒前
5秒前
5秒前
我还能学发布了新的文献求助10
6秒前
纣王发布了新的文献求助10
6秒前
爱听歌的万言完成签到,获得积分10
6秒前
7秒前
9秒前
李田田发布了新的文献求助10
10秒前
10秒前
计科通完成签到,获得积分10
11秒前
11秒前
乐乐应助小盒采纳,获得10
11秒前
JamesPei应助潇湘夜雨采纳,获得10
12秒前
12秒前
lyt发布了新的文献求助10
13秒前
默默紊完成签到,获得积分10
14秒前
大大泡泡发布了新的文献求助10
14秒前
小黎关注了科研通微信公众号
14秒前
15秒前
15秒前
16秒前
马康辉应助墙头的草采纳,获得10
17秒前
PEI发布了新的文献求助10
17秒前
19秒前
许昊龙发布了新的文献求助10
20秒前
orixero应助学术混子采纳,获得10
20秒前
lyt完成签到,获得积分10
20秒前
浮浮世世发布了新的文献求助30
22秒前
23秒前
量子星尘发布了新的文献求助10
24秒前
魔笛的云宝完成签到,获得积分10
24秒前
冷静飞柏发布了新的文献求助10
25秒前
柚子完成签到,获得积分20
25秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
The Moiseyev Dance Company Tours America: "Wholesome" Comfort during a Cold War 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979896
求助须知:如何正确求助?哪些是违规求助? 3523949
关于积分的说明 11219166
捐赠科研通 3261387
什么是DOI,文献DOI怎么找? 1800629
邀请新用户注册赠送积分活动 879209
科研通“疑难数据库(出版商)”最低求助积分说明 807202