期刊:Macromolecules [American Chemical Society] 日期:2023-01-03卷期号:56 (2): 393-403被引量:6
标识
DOI:10.1021/acs.macromol.2c01954
摘要
Using theory and simulations, we have investigated the phonons and their role in thermal energy transport in semicrystalline polyethylenes. Considering alternating stacks of lamellae and amorphous regions, and labeling one polyethylene chain interwoven among two amorphous regions and one lamella, we have explored the underlying mechanism of thermal conductivity of polyethylene in its semicrystalline state. We report that hairpin-like folds at the crystalline–amorphous interface significantly scatter phonons, allowing only less than half of the phonons to transmit through polyethylene backbone. Monitoring the phonon propagation and scattering at the interfaces, we have computed thermal conductivity of semicrystalline polyethylene. We have derived a design principle to control thermal conductivity of semicrystalline polyethylene in terms of lamellar thickness and the number of folds per chain at the crystalline–amorphous interface.