Structure Evolution on Manifold for Graph Learning

电压图 空图形 计算机科学 图形 蝴蝶图 图的强度 图形带宽 折线图 理论计算机科学
作者
Hai Wan,Xinwei Zhang,Yubo Zhang,Xibin Zhao,Shihui Ying,Yue Gao
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:45 (6): 7751-7763 被引量:4
标识
DOI:10.1109/tpami.2022.3225572
摘要

Graph has been widely used in various applications, while how to optimize the graph is still an open question. In this paper, we propose a framework to optimize the graph structure via structure evolution on graph manifold. We first define the graph manifold and search the best graph structure on this manifold. Concretely, associated with the data features and the prediction results of a given task, we define a graph energy to measure how the graph fits the graph manifold from an initial graph structure. The graph structure then evolves by minimizing the graph energy. In this process, the graph structure can be evolved on the graph manifold corresponding to the update of the prediction results. Alternatively iterating these two processes, both the graph structure and the prediction results can be updated until converge. It achieves the suitable structure for graph learning without searching all hyperparameters. To evaluate the performance of the proposed method, we have conducted experiments on eight datasets and compared with the recent state-of-the-art methods. Experiment results demonstrate that our method outperforms the state-of-the-art methods in both transductive and inductive settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
呗呗兔发布了新的文献求助10
1秒前
小二郎应助平淡的万言采纳,获得10
1秒前
1秒前
1秒前
lslslslsllss发布了新的文献求助20
3秒前
3秒前
Na发布了新的文献求助30
3秒前
5秒前
cxy发布了新的文献求助10
5秒前
木子发布了新的文献求助10
5秒前
善学以致用应助辛巴采纳,获得10
8秒前
ww发布了新的文献求助10
8秒前
Criminology34应助sks采纳,获得10
10秒前
三金完成签到 ,获得积分10
10秒前
hou发布了新的文献求助10
12秒前
Owen应助cxy采纳,获得10
12秒前
啊哈哈哈哈完成签到,获得积分10
13秒前
13秒前
无聊的土豆完成签到,获得积分10
13秒前
14秒前
14秒前
外向青筠完成签到 ,获得积分10
15秒前
SilentRP完成签到,获得积分10
16秒前
17秒前
我歌发布了新的文献求助10
19秒前
victor完成签到,获得积分10
19秒前
21秒前
JamesPei应助ww采纳,获得10
21秒前
24秒前
辛巴发布了新的文献求助10
24秒前
25秒前
dsa2815完成签到,获得积分10
26秒前
Lucas应助xxxxx采纳,获得10
27秒前
CodeCraft应助我歌采纳,获得10
27秒前
28秒前
哈哈哈完成签到,获得积分20
28秒前
Na完成签到 ,获得积分10
28秒前
28秒前
xchqb发布了新的文献求助10
31秒前
dsa2815发布了新的文献求助10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Corrosion and corrosion control 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5373754
求助须知:如何正确求助?哪些是违规求助? 4499770
关于积分的说明 14007232
捐赠科研通 4406707
什么是DOI,文献DOI怎么找? 2420672
邀请新用户注册赠送积分活动 1413421
关于科研通互助平台的介绍 1389992