Structure Evolution on Manifold for Graph Learning

电压图 空图形 计算机科学 图形 蝴蝶图 图的强度 图形带宽 折线图 理论计算机科学
作者
Hai Wan,Xinwei Zhang,Yubo Zhang,Xibin Zhao,Shihui Ying,Yue Gao
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:45 (6): 7751-7763 被引量:4
标识
DOI:10.1109/tpami.2022.3225572
摘要

Graph has been widely used in various applications, while how to optimize the graph is still an open question. In this paper, we propose a framework to optimize the graph structure via structure evolution on graph manifold. We first define the graph manifold and search the best graph structure on this manifold. Concretely, associated with the data features and the prediction results of a given task, we define a graph energy to measure how the graph fits the graph manifold from an initial graph structure. The graph structure then evolves by minimizing the graph energy. In this process, the graph structure can be evolved on the graph manifold corresponding to the update of the prediction results. Alternatively iterating these two processes, both the graph structure and the prediction results can be updated until converge. It achieves the suitable structure for graph learning without searching all hyperparameters. To evaluate the performance of the proposed method, we have conducted experiments on eight datasets and compared with the recent state-of-the-art methods. Experiment results demonstrate that our method outperforms the state-of-the-art methods in both transductive and inductive settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮游应助科研通管家采纳,获得10
刚刚
Orange应助科研通管家采纳,获得10
刚刚
浮游应助科研通管家采纳,获得10
刚刚
顾矜应助科研通管家采纳,获得10
刚刚
传奇3应助科研通管家采纳,获得10
刚刚
bmhs2017应助科研通管家采纳,获得10
刚刚
科研通AI6应助科研通管家采纳,获得10
刚刚
刻苦的芝麻完成签到,获得积分20
1秒前
汉堡包应助科研通管家采纳,获得10
1秒前
大模型应助科研通管家采纳,获得10
1秒前
young应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
研友_VZG7GZ应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
1秒前
1秒前
感谢大家完成签到,获得积分10
1秒前
1秒前
大模型应助年轻绮波采纳,获得10
2秒前
车窗外发布了新的文献求助10
2秒前
aedi发布了新的文献求助10
2秒前
辛艺发布了新的文献求助10
3秒前
困敦发布了新的文献求助10
3秒前
4秒前
4秒前
学术学习发布了新的文献求助10
4秒前
江水居士发布了新的文献求助10
4秒前
4秒前
昱鱼七seven完成签到,获得积分10
5秒前
5秒前
FashionBoy应助Jsihao采纳,获得10
6秒前
6秒前
Weipeng发布了新的文献求助10
7秒前
00gi发布了新的文献求助10
7秒前
俭朴念双完成签到,获得积分10
7秒前
YQQ完成签到,获得积分20
7秒前
顾矜应助zhang采纳,获得10
7秒前
钮钴禄氏梅完成签到,获得积分10
8秒前
illusion发布了新的文献求助10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5406217
求助须知:如何正确求助?哪些是违规求助? 4524325
关于积分的说明 14097517
捐赠科研通 4438110
什么是DOI,文献DOI怎么找? 2435966
邀请新用户注册赠送积分活动 1428100
关于科研通互助平台的介绍 1406280