Transfer learning-based data anomaly detection for structural health monitoring

结构健康监测 计算机科学 数据挖掘 学习迁移 卷积神经网络 异常检测 桥(图论) 鉴定(生物学) 龙卷风 异常(物理) 人工智能 模式识别(心理学) 机器学习 工程类 结构工程 生物 医学 海洋学 物理 植物 内科学 地质学 凝聚态物理
作者
Qiuyue Pan,Yuequan Bao,Hui Li
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
卷期号:22 (5): 3077-3091 被引量:25
标识
DOI:10.1177/14759217221142174
摘要

The structural health monitoring (SHM) data of civil infrastructure are inevitably contaminated due to sensor faults, environmental noise interference, and data transmission failures. Anomalous data severely disturb the subsequent structural modal identification, damage identification, and condition assessment. Therefore, it is critical to detect and clean SHM data before data analysis. This paper proposes a novel approach for data anomaly detection based on transfer learning, that makes full use of the similarity of the anomalous patterns across different bridges and shares the knowledge incorporated in a deep neural network to achieve high-accuracy data anomaly identification for bridge groups. In the proposed approach, first, a multivariate database for a source bridge is built by plotting and labeling the raw sequential data. Then, a convolutional neural network (CNN) for data anomaly classification is designed and trained with the database in different conditions. The original CNN with the highest accuracy is transferred to a new bridge with enhancement training using a small part of the target bridge data. To validate the performance of the proposed method, the multivariate SHM data for two real long-span bridges are employed, including the acceleration, strain, displacement, humidity, and temperature data. The results demonstrate that transfer learning leads to a better classification capacity for the case of scarce labeled training data compared with the original network.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
camelia关注了科研通微信公众号
3秒前
4秒前
thynkz发布了新的文献求助10
4秒前
科目三应助拾捌采纳,获得10
5秒前
ASIS完成签到,获得积分10
6秒前
舒心莫言完成签到,获得积分10
6秒前
慕青应助平淡的碧菡采纳,获得10
10秒前
11秒前
羊羊羊发布了新的文献求助10
14秒前
YJL发布了新的文献求助10
14秒前
不配.应助研友_ndDGVn采纳,获得20
14秒前
科研通AI2S应助科研通管家采纳,获得10
15秒前
星辰大海应助科研通管家采纳,获得10
16秒前
CodeCraft应助科研通管家采纳,获得10
16秒前
情怀应助科研通管家采纳,获得10
16秒前
不配.应助科研通管家采纳,获得20
16秒前
16秒前
科研通AI2S应助科研通管家采纳,获得10
16秒前
隐形曼青应助科研通管家采纳,获得10
16秒前
斯文败类应助科研通管家采纳,获得10
16秒前
lixiao应助科研通管家采纳,获得10
16秒前
16秒前
16秒前
16秒前
17秒前
zqingxia发布了新的文献求助10
19秒前
土豆丝炒姜丝应助wzx采纳,获得10
20秒前
camelia发布了新的文献求助10
20秒前
22秒前
义气雍完成签到 ,获得积分10
22秒前
优美亦云完成签到,获得积分10
24秒前
lulu完成签到,获得积分10
26秒前
Singularity应助vv采纳,获得10
27秒前
Ava应助旭宝儿采纳,获得10
27秒前
28秒前
28秒前
28秒前
zhongbo完成签到,获得积分10
28秒前
bkagyin应助玖梦采纳,获得10
30秒前
祥瑞发布了新的文献求助10
31秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3138630
求助须知:如何正确求助?哪些是违规求助? 2789658
关于积分的说明 7791830
捐赠科研通 2445993
什么是DOI,文献DOI怎么找? 1300801
科研通“疑难数据库(出版商)”最低求助积分说明 626058
版权声明 601079