An Investigation of Exhaust Gas Temperature of Aircraft Engine Using LSTM

涡扇发动机 计算机科学 障碍物 时间序列 系列(地层学) 深度学习 数据驱动 人工智能 数据建模 机器学习 实时计算 汽车工程 工程类 生物 数据库 古生物学 法学 政治学
作者
Shafi Ullah,Shuguang Li,Khalid Khan,Shahbaz Khan,Ilyas Khan,Sayed M. Eldin
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:11: 5168-5177 被引量:16
标识
DOI:10.1109/access.2023.3235619
摘要

A significant obstacle to creating efficient machine health monitoring systems is estimating performance degradation in dynamic systems, like aero plane engines. In exceedingly complex systems with many components, states, and parameters, conventional model-based and data-driven methods fall short of producing satisfactory results. While traditional methods had several drawbacks, deep learning has emerged as a viable computational tool for dynamic system prediction. In order to track system deterioration and estimate the EGT, a novel technique based on the Long Short-Term Memory (LSTM) network, (an architecture created to find the hidden patterns hidden in time series data) is provided in this research. The health monitoring information of aircraft turbofan engines is used to assess the effectiveness of the proposed strategy. As a result of this network’s ability to recognize the input data as a real-time series, the output in the following step can be predicted. Results of the suggested study show a significant ability to anticipate the output in the following time step. Additionally, the proposed model has a shorter learning curve and is more accurate.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
桐桐应助cowboy123采纳,获得10
2秒前
Fan发布了新的文献求助10
2秒前
Jasper应助科研通管家采纳,获得30
2秒前
2秒前
2秒前
Ava应助科研通管家采纳,获得10
2秒前
所所应助科研通管家采纳,获得10
3秒前
大模型应助科研通管家采纳,获得10
3秒前
Jasper应助丁丁采纳,获得10
3秒前
3秒前
852应助LCW采纳,获得10
3秒前
孤独的怜阳完成签到,获得积分20
4秒前
啤酒人完成签到 ,获得积分10
6秒前
7秒前
SYLH应助虚心的静枫采纳,获得20
7秒前
义气聪展完成签到 ,获得积分10
10秒前
ommphey发布了新的文献求助100
11秒前
leranlily完成签到,获得积分10
11秒前
MANGMANG发布了新的文献求助10
12秒前
12秒前
12秒前
12秒前
Jasper应助Yuanyuan采纳,获得10
13秒前
李物发布了新的文献求助20
14秒前
quhayley应助樊珩采纳,获得10
17秒前
zhi发布了新的文献求助10
17秒前
Nikola完成签到 ,获得积分10
17秒前
18秒前
英吉利25发布了新的文献求助10
18秒前
21秒前
22秒前
N型半导体发布了新的文献求助10
23秒前
小二郎应助wwpedd采纳,获得30
23秒前
QIU关闭了QIU文献求助
23秒前
回家睡觉发布了新的文献求助30
24秒前
凶狠的惜海完成签到,获得积分20
24秒前
25秒前
媛桃子完成签到 ,获得积分10
25秒前
英姑应助孟古采纳,获得10
28秒前
LCW发布了新的文献求助10
28秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952383
求助须知:如何正确求助?哪些是违规求助? 3497737
关于积分的说明 11088744
捐赠科研通 3228363
什么是DOI,文献DOI怎么找? 1784838
邀请新用户注册赠送积分活动 868913
科研通“疑难数据库(出版商)”最低求助积分说明 801303