End-to-End Multitask Learning With Vision Transformer

多任务学习 计算机科学 人工智能 变压器 卷积神经网络 机器学习 水准点(测量) 特征学习 深度学习 任务(项目管理) 物理 管理 大地测量学 量子力学 电压 经济 地理
作者
Yingjie Tian,Kunlong Bai
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (7): 9579-9590 被引量:3
标识
DOI:10.1109/tnnls.2023.3234166
摘要

Multitask learning (MTL) is a challenging puzzle, particularly in the realm of computer vision (CV). Setting up vanilla deep MTL requires either hard or soft parameter sharing schemes that employ greedy search to find the optimal network designs. Despite its widespread application, the performance of MTL models is vulnerable to under-constrained parameters. In this article, we draw on the recent success of vision transformer (ViT) to propose a multitask representation learning method called multitask ViT (MTViT), which proposes a multiple branch transformer to sequentially process the image patches (i.e., tokens in transformer) that are associated with various tasks. Through the proposed cross-task attention (CA) module, a task token from each task branch is regarded as a query for exchanging information with other task branches. In contrast to prior models, our proposed method extracts intrinsic features using the built-in self-attention mechanism of the ViT and requires just linear time on memory and computation complexity, rather than quadratic time. Comprehensive experiments are carried out on two benchmark datasets, including NYU-Depth V2 (NYUDv2) and CityScapes, after which it is found that our proposed MTViT outperforms or is on par with existing convolutional neural network (CNN)-based MTL methods. In addition, we apply our method to a synthetic dataset in which task relatedness is controlled. Surprisingly, experimental results reveal that the MTViT exhibits excellent performance when tasks are less related.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
执着的安雁完成签到,获得积分10
2秒前
不懈奋进应助nz采纳,获得30
3秒前
3秒前
大气乘风发布了新的文献求助10
4秒前
昵称发布了新的文献求助10
4秒前
林大侠发布了新的文献求助10
5秒前
Atom完成签到 ,获得积分10
5秒前
燃尔完成签到 ,获得积分10
5秒前
6秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
7秒前
Hello应助啦啦啦采纳,获得10
7秒前
7秒前
8秒前
9秒前
搜集达人应助全若之采纳,获得10
9秒前
9秒前
xiangeyedu发布了新的文献求助10
10秒前
10秒前
SaqLa完成签到,获得积分10
10秒前
HXY发布了新的文献求助30
11秒前
华仔应助晨晨采纳,获得30
12秒前
科目三应助小卫采纳,获得10
12秒前
内向雨南完成签到,获得积分10
13秒前
zgliu78完成签到,获得积分10
13秒前
思源应助zhaosh采纳,获得10
14秒前
14秒前
小马甲应助第八维采纳,获得30
15秒前
贺呵呵发布了新的文献求助10
15秒前
15秒前
酷波er应助HSD采纳,获得10
15秒前
15秒前
Dasiliy完成签到,获得积分10
15秒前
桐桐应助叁金采纳,获得30
16秒前
16秒前
领导范儿应助啦啦啦采纳,获得10
16秒前
汉堡包应助明理乐珍采纳,获得20
17秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979122
求助须知:如何正确求助?哪些是违规求助? 3522967
关于积分的说明 11215682
捐赠科研通 3260436
什么是DOI,文献DOI怎么找? 1799990
邀请新用户注册赠送积分活动 878770
科研通“疑难数据库(出版商)”最低求助积分说明 807061