Prediction of Cobb Angle Using Deep Learning Algorithm with Three-Dimensional Depth Sensor Considering the Influence of Garment in Idiopathic Scoliosis

医学 柯布角 科布 脊柱侧凸 畸形 特发性脊柱侧凸 相关系数 撑杆 口腔正畸科 算法 人工智能 卷积神经网络 机器学习 外科 计算机科学 结构工程 工程类 生物 遗传学
作者
Yoko Ishikawa,Terufumi Kokabu,Katsuhisa Yamada,Yoichi M. Ito,Hiroyuki Tachi,Hisataka Suzuki,Takashi Ohnishi,Tsutomu Endo,Daisuke Ukeba,Katsuro Ura,Masahiko Takahata,Norimasa Iwasaki,Hideki Sudo
出处
期刊:Journal of Clinical Medicine [MDPI AG]
卷期号:12 (2): 499-499
标识
DOI:10.3390/jcm12020499
摘要

Adolescent idiopathic scoliosis (AIS) is the most common pediatric spinal deformity. Early detection of deformity and timely intervention, such as brace treatment, can help inhibit progressive changes. A three-dimensional (3D) depth-sensor imaging system with a convolutional neural network was previously developed to predict the Cobb angle. The purpose of the present study was to (1) evaluate the performance of the deep learning algorithm (DLA) in predicting the Cobb angle and (2) assess the predictive ability depending on the presence or absence of clothing in a prospective analysis. We included 100 subjects with suspected AIS. The correlation coefficient between the actual and predicted Cobb angles was 0.87, and the mean absolute error and root mean square error were 4.7° and 6.0°, respectively, for Adam’s forward bending without underwear. There were no significant differences in the correlation coefficients between the groups with and without underwear in the forward-bending posture. The performance of the DLA with a 3D depth sensor was validated using an independent external validation dataset. Because the psychological burden of children and adolescents on naked body imaging is an unignorable problem, scoliosis examination with underwear is a valuable alternative in clinics or schools.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助linguobin采纳,获得10
刚刚
Hus11221完成签到,获得积分10
刚刚
红红火火恍恍惚惚完成签到,获得积分10
刚刚
1秒前
1秒前
科目三应助mo采纳,获得10
1秒前
1秒前
敷斩发布了新的文献求助10
1秒前
伶俐的以晴完成签到,获得积分10
2秒前
博士小学生应助Dr.Xu采纳,获得10
3秒前
洒脱完成签到,获得积分10
3秒前
3秒前
aoao完成签到,获得积分10
3秒前
3秒前
mmm发布了新的文献求助10
4秒前
米儿完成签到,获得积分10
4秒前
在水一方应助lisa采纳,获得10
4秒前
暮霭沉沉应助June采纳,获得10
5秒前
击飞完成签到,获得积分10
5秒前
6秒前
小二郎应助坚强的严青采纳,获得10
6秒前
Hello应助坚强的严青采纳,获得10
6秒前
Ava应助坚强的严青采纳,获得10
6秒前
传奇3应助坚强的严青采纳,获得10
6秒前
搜集达人应助坚强的严青采纳,获得10
6秒前
6秒前
yzxzdm完成签到 ,获得积分0
7秒前
专注觅柔完成签到,获得积分10
7秒前
伶俐初兰发布了新的文献求助10
7秒前
噜啦噜啦嘞完成签到,获得积分10
7秒前
7秒前
7秒前
8秒前
8秒前
俺爱SCI完成签到 ,获得积分10
9秒前
9秒前
禹代秋完成签到,获得积分10
10秒前
11秒前
小于发布了新的文献求助10
11秒前
LizhenWANG完成签到 ,获得积分10
12秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3155477
求助须知:如何正确求助?哪些是违规求助? 2806554
关于积分的说明 7869834
捐赠科研通 2464938
什么是DOI,文献DOI怎么找? 1311998
科研通“疑难数据库(出版商)”最低求助积分说明 629837
版权声明 601892