亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

COVID-19 outcome prediction by integrating clinical and metabolic data using machine learning algorithms

2019年冠状病毒病(COVID-19) 机器学习 疾病 医学 随机森林 特征选择 严重急性呼吸综合征冠状病毒2型(SARS-CoV-2) 算法 传染病(医学专业) 人工智能 内科学 计算机科学
作者
Karen E. Villagrana-Bañuelos,Valeria Maeda-Gutiérrez,Vanessa Alcalá-Rmz,Juan J Oropeza-Valdez,Ana Sofía Herrera-Van Oostdam,Julio Enrique Castañeda-Delgado,Jesús Adrián López,Juan C Borrego Moreno,Carlos E. Galván-Tejada,Jorge I Galván-Tejeda,Hamurabi Gamboa-Rosales,Huizilopoztli Luna-García,José M. Celaya-Padilla,Yamilé López‐Hernández
出处
期刊:Revista De Investigacion Clinica [Publicidad Permanyer, SLU]
卷期号:74 (6) 被引量:3
标识
DOI:10.24875/ric.22000182
摘要

The coronavirus disease (COVID-19) is an infectious disease caused by the SARS-CoV-2 virus and is responsible for nearly 6 million deaths worldwide in the past 2 years. Machine learning (ML) models could help physicians in identifying high-risk individuals.To study the use of ML models for COVID-19 prediction outcomes using clinical data and a combination of clinical and metabolic data, measured in a metabolomics facility from a public university.A total of 154 patients were included in the study. "Basic profile" was considered with clinical and demographic variables (33 variables), whereas in the "extended profile," metabolomic and immunological variables were also considered (156 characteristics). A selection of features was carried out for each of the profiles with a genetic algorithm (GA) and random forest models were trained and tested to predict each of the stages of COVID-19.The model based on extended profile was more useful in early stages of the disease. Models based on clinical data were preferred for predicting severe and critical illness and death. ML detected trimethylamine N-oxide, lipid mediators, and neutrophil/lymphocyte ratio as important variables.ML and GAs provided adequate models to predict COVID-19 outcomes in patients with different severity grades.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
xixiazhiwang完成签到 ,获得积分10
5秒前
14秒前
17秒前
22秒前
26秒前
氢氧化钠Li完成签到,获得积分10
33秒前
清风朗月完成签到,获得积分10
50秒前
51秒前
天天快乐应助月华采纳,获得10
53秒前
1分钟前
冷艳的萝莉完成签到,获得积分10
1分钟前
1分钟前
hyyyh发布了新的文献求助10
1分钟前
1分钟前
1分钟前
青青2020发布了新的文献求助10
1分钟前
英俊的铭应助青青2020采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
GingerF应助科研通管家采纳,获得50
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
顾矜应助青柠采纳,获得10
1分钟前
1分钟前
1分钟前
oo完成签到 ,获得积分10
2分钟前
Jasper应助青柠采纳,获得10
2分钟前
2分钟前
sakiko发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
serein发布了新的文献求助10
2分钟前
青柠发布了新的文献求助10
2分钟前
高分求助中
Learning and Memory: A Comprehensive Reference 2000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1541
The Jasper Project 800
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Binary Alloy Phase Diagrams, 2nd Edition 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5502807
求助须知:如何正确求助?哪些是违规求助? 4598515
关于积分的说明 14464281
捐赠科研通 4532106
什么是DOI,文献DOI怎么找? 2483837
邀请新用户注册赠送积分活动 1467039
关于科研通互助平台的介绍 1439707