亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

COVID-19 outcome prediction by integrating clinical and metabolic data using machine learning algorithms

2019年冠状病毒病(COVID-19) 机器学习 疾病 医学 随机森林 特征选择 严重急性呼吸综合征冠状病毒2型(SARS-CoV-2) 算法 传染病(医学专业) 人工智能 内科学 计算机科学
作者
Karen E. Villagrana-Bañuelos,Valeria Maeda-Gutiérrez,Vanessa Alcalá-Rmz,Juan J Oropeza-Valdez,Ana Sofía Herrera-Van Oostdam,Julio Enrique Castañeda-Delgado,Jesús Adrián López,Juan C Borrego Moreno,Carlos E. Galván-Tejada,Jorge I Galván-Tejeda,Hamurabi Gamboa-Rosales,Huizilopoztli Luna-García,José M. Celaya-Padilla,Yamilé López‐Hernández
出处
期刊:Revista De Investigacion Clinica [Permanyer]
卷期号:74 (6) 被引量:3
标识
DOI:10.24875/ric.22000182
摘要

The coronavirus disease (COVID-19) is an infectious disease caused by the SARS-CoV-2 virus and is responsible for nearly 6 million deaths worldwide in the past 2 years. Machine learning (ML) models could help physicians in identifying high-risk individuals.To study the use of ML models for COVID-19 prediction outcomes using clinical data and a combination of clinical and metabolic data, measured in a metabolomics facility from a public university.A total of 154 patients were included in the study. "Basic profile" was considered with clinical and demographic variables (33 variables), whereas in the "extended profile," metabolomic and immunological variables were also considered (156 characteristics). A selection of features was carried out for each of the profiles with a genetic algorithm (GA) and random forest models were trained and tested to predict each of the stages of COVID-19.The model based on extended profile was more useful in early stages of the disease. Models based on clinical data were preferred for predicting severe and critical illness and death. ML detected trimethylamine N-oxide, lipid mediators, and neutrophil/lymphocyte ratio as important variables.ML and GAs provided adequate models to predict COVID-19 outcomes in patients with different severity grades.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
今后应助暮光的加纳采纳,获得10
2秒前
3秒前
14秒前
暮光的加纳完成签到,获得积分10
14秒前
17秒前
19秒前
量子星尘发布了新的文献求助10
20秒前
vicky完成签到 ,获得积分10
33秒前
与一完成签到 ,获得积分10
41秒前
xiaozhu完成签到,获得积分10
45秒前
nnnick完成签到,获得积分0
57秒前
Jason完成签到 ,获得积分10
1分钟前
古铜完成签到 ,获得积分10
1分钟前
斯文败类应助科研通管家采纳,获得10
1分钟前
caca完成签到,获得积分0
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
斯文觅云完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
CodeCraft应助beetes采纳,获得10
2分钟前
汉堡包应助ruclinwe采纳,获得10
2分钟前
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
ruclinwe发布了新的文献求助10
3分钟前
李昕123完成签到 ,获得积分10
3分钟前
ruclinwe完成签到,获得积分10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
小二郎应助科研通管家采纳,获得10
3分钟前
3分钟前
3分钟前
3分钟前
moncypool发布了新的文献求助10
3分钟前
烟花应助moncypool采纳,获得10
3分钟前
LJL完成签到 ,获得积分10
4分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960064
求助须知:如何正确求助?哪些是违规求助? 3506271
关于积分的说明 11128598
捐赠科研通 3238264
什么是DOI,文献DOI怎么找? 1789651
邀请新用户注册赠送积分活动 871846
科研通“疑难数据库(出版商)”最低求助积分说明 803069