Multi-Relations Aware Network for In-the-Wild Facial Expression Recognition

人工智能 计算机科学 模式识别(心理学) 人工神经网络 突出 面部表情 变压器 空间关系 特征提取 面部识别系统 计算机视觉 工程类 电气工程 电压
作者
Dongliang Chen,Guihua Wen,Huihui Li,Rui Chen,Cheng Li
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:33 (8): 3848-3859 被引量:6
标识
DOI:10.1109/tcsvt.2023.3234312
摘要

Facial expression recognition (FER) becomes more challenging in the wild due to unconstrained conditions, such as the different illumination, pose changes, and occlusion of the face. Current FER methods deploy the attention mechanism in deep neural networks to improve the performance. However, these models only capture the limited attention features and relationships. Thus this paper proposes a novel FER framework called multi-relations aware network (MRAN), which can focus on global and local attention features and learn the multi-level relationships among local regions, between global-local features and among different samples, to obtain efficient emotional features. Specifically, our method first imposes the spatial attention on both the whole face and local regions to simultaneously learn the global and local salient features. After that, a region relation transformer is deployed to capture the internal structure among local facial regions, and a global-local relation transformer is designed to learn the fusion relations between global features and local features for different facial expressions. Subsequently, a sample relation transformer is deployed to focus on intrinsic similarity relationship among training samples, which promotes invariant feature learning for each expression. Finally, a joint optimization strategy is designed to efficiently optimize the model. The conducted experimental results on in-the-wild databases show that our method obtains the superior performance compared to some state-of-the-art models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Rencal发布了新的文献求助20
刚刚
欣喜豌豆完成签到,获得积分10
1秒前
Eurus发布了新的文献求助30
2秒前
2秒前
科研通AI2S应助Feng采纳,获得10
2秒前
嘎嘎嘎嘎发布了新的文献求助10
3秒前
斯文媚颜发布了新的文献求助10
3秒前
QQQQ发布了新的文献求助10
3秒前
3秒前
喜悦的鬼神完成签到 ,获得积分10
4秒前
4秒前
诸葛不亮完成签到,获得积分10
5秒前
io完成签到,获得积分10
5秒前
6秒前
西瓜完成签到 ,获得积分10
7秒前
失了智完成签到,获得积分10
7秒前
8秒前
哈哈哈哈完成签到,获得积分10
8秒前
suiyi完成签到,获得积分10
8秒前
8秒前
FashionBoy应助嘎嘎嘎嘎采纳,获得10
8秒前
9秒前
9秒前
9秒前
9秒前
9秒前
111应助婷婷采纳,获得10
10秒前
无奈的雍完成签到,获得积分10
10秒前
半夏完成签到,获得积分10
10秒前
suiyi发布了新的文献求助10
10秒前
11秒前
徐新雨发布了新的文献求助10
12秒前
冷冷完成签到,获得积分10
12秒前
12秒前
无奈的雍发布了新的文献求助10
13秒前
13秒前
安ANN发布了新的文献求助10
13秒前
tangying8642完成签到,获得积分10
13秒前
划水的鱼发布了新的文献求助10
13秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3152625
求助须知:如何正确求助?哪些是违规求助? 2803842
关于积分的说明 7855937
捐赠科研通 2461519
什么是DOI,文献DOI怎么找? 1310346
科研通“疑难数据库(出版商)”最低求助积分说明 629199
版权声明 601782