Multi-Relations Aware Network for In-the-Wild Facial Expression Recognition

人工智能 计算机科学 模式识别(心理学) 人工神经网络 突出 面部表情 变压器 空间关系 特征提取 面部识别系统 计算机视觉 工程类 电气工程 电压
作者
Dongliang Chen,Guihua Wen,Huihui Li,Rui Chen,Cheng Li
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:33 (8): 3848-3859 被引量:6
标识
DOI:10.1109/tcsvt.2023.3234312
摘要

Facial expression recognition (FER) becomes more challenging in the wild due to unconstrained conditions, such as the different illumination, pose changes, and occlusion of the face. Current FER methods deploy the attention mechanism in deep neural networks to improve the performance. However, these models only capture the limited attention features and relationships. Thus this paper proposes a novel FER framework called multi-relations aware network (MRAN), which can focus on global and local attention features and learn the multi-level relationships among local regions, between global-local features and among different samples, to obtain efficient emotional features. Specifically, our method first imposes the spatial attention on both the whole face and local regions to simultaneously learn the global and local salient features. After that, a region relation transformer is deployed to capture the internal structure among local facial regions, and a global-local relation transformer is designed to learn the fusion relations between global features and local features for different facial expressions. Subsequently, a sample relation transformer is deployed to focus on intrinsic similarity relationship among training samples, which promotes invariant feature learning for each expression. Finally, a joint optimization strategy is designed to efficiently optimize the model. The conducted experimental results on in-the-wild databases show that our method obtains the superior performance compared to some state-of-the-art models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Broadway Zhang完成签到,获得积分10
刚刚
米米碎片完成签到,获得积分10
刚刚
霜鸣发布了新的文献求助10
1秒前
高大代容发布了新的文献求助10
1秒前
2秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
汉堡包应助默listening采纳,获得10
4秒前
immm完成签到,获得积分10
5秒前
5秒前
5秒前
无花果应助霜鸣采纳,获得10
5秒前
深情安青应助XLL小绿绿采纳,获得10
6秒前
djiwisksk66应助hqr采纳,获得10
7秒前
墨墨完成签到,获得积分10
8秒前
8秒前
9秒前
Vivian完成签到 ,获得积分10
9秒前
9秒前
10秒前
aa发布了新的文献求助10
10秒前
11秒前
11秒前
万能图书馆应助小蟑螂采纳,获得10
12秒前
思源应助jiesenya采纳,获得10
12秒前
tfy完成签到 ,获得积分10
13秒前
超菜发布了新的文献求助10
14秒前
默listening发布了新的文献求助10
16秒前
17秒前
18秒前
Orange应助高大代容采纳,获得10
19秒前
20秒前
在水一方应助Broadway Zhang采纳,获得10
20秒前
蓝橙发布了新的文献求助10
20秒前
蔡宇逸发布了新的文献求助10
21秒前
aa完成签到,获得积分10
21秒前
超菜完成签到,获得积分10
22秒前
23秒前
英俊的铭应助Silver采纳,获得10
23秒前
z落水无痕完成签到,获得积分10
23秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3972181
求助须知:如何正确求助?哪些是违规求助? 3516632
关于积分的说明 11183762
捐赠科研通 3251979
什么是DOI,文献DOI怎么找? 1796240
邀请新用户注册赠送积分活动 876280
科研通“疑难数据库(出版商)”最低求助积分说明 805467