Multi-Relations Aware Network for In-the-Wild Facial Expression Recognition

人工智能 计算机科学 模式识别(心理学) 人工神经网络 突出 面部表情 变压器 空间关系 特征提取 面部识别系统 计算机视觉 工程类 电气工程 电压
作者
Dongliang Chen,Guihua Wen,Huihui Li,Rui Chen,Cheng Li
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:33 (8): 3848-3859 被引量:6
标识
DOI:10.1109/tcsvt.2023.3234312
摘要

Facial expression recognition (FER) becomes more challenging in the wild due to unconstrained conditions, such as the different illumination, pose changes, and occlusion of the face. Current FER methods deploy the attention mechanism in deep neural networks to improve the performance. However, these models only capture the limited attention features and relationships. Thus this paper proposes a novel FER framework called multi-relations aware network (MRAN), which can focus on global and local attention features and learn the multi-level relationships among local regions, between global-local features and among different samples, to obtain efficient emotional features. Specifically, our method first imposes the spatial attention on both the whole face and local regions to simultaneously learn the global and local salient features. After that, a region relation transformer is deployed to capture the internal structure among local facial regions, and a global-local relation transformer is designed to learn the fusion relations between global features and local features for different facial expressions. Subsequently, a sample relation transformer is deployed to focus on intrinsic similarity relationship among training samples, which promotes invariant feature learning for each expression. Finally, a joint optimization strategy is designed to efficiently optimize the model. The conducted experimental results on in-the-wild databases show that our method obtains the superior performance compared to some state-of-the-art models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
涛浪完成签到,获得积分10
刚刚
上官若男应助yzy采纳,获得10
1秒前
会飞的小白完成签到,获得积分10
1秒前
1秒前
8564523发布了新的文献求助10
1秒前
珈蓝完成签到,获得积分10
2秒前
吉祥完成签到,获得积分0
2秒前
2秒前
3秒前
开心尔云完成签到,获得积分10
3秒前
在水一方应助羽言采纳,获得10
3秒前
3秒前
HZW发布了新的文献求助20
4秒前
不厌关注了科研通微信公众号
4秒前
labxgr完成签到,获得积分10
4秒前
4秒前
4秒前
吱嗷赵完成签到,获得积分20
4秒前
MADKAI发布了新的文献求助20
5秒前
木木完成签到,获得积分10
5秒前
5秒前
Jenny应助强健的月饼采纳,获得10
6秒前
记号完成签到,获得积分10
6秒前
玛卡巴卡完成签到,获得积分10
6秒前
KissesU完成签到 ,获得积分10
7秒前
大厨懒洋洋完成签到,获得积分10
7秒前
7秒前
咕噜仔发布了新的文献求助10
8秒前
Nelson_Foo完成签到,获得积分10
8秒前
Ll发布了新的文献求助10
8秒前
@_@完成签到,获得积分10
9秒前
hhh发布了新的文献求助10
9秒前
su完成签到,获得积分20
9秒前
GAO完成签到,获得积分10
9秒前
单纯乞完成签到,获得积分10
9秒前
守夜人发布了新的文献求助10
10秒前
liuchao发布了新的文献求助10
10秒前
逃之姚姚完成签到 ,获得积分10
10秒前
hy完成签到 ,获得积分20
11秒前
xhy发布了新的文献求助10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672