已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Multi-Relations Aware Network for In-the-Wild Facial Expression Recognition

人工智能 计算机科学 模式识别(心理学) 人工神经网络 突出 面部表情 变压器 空间关系 特征提取 面部识别系统 计算机视觉 工程类 电气工程 电压
作者
Dongliang Chen,Guihua Wen,Huihui Li,Rui Chen,Cheng Li
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:33 (8): 3848-3859 被引量:6
标识
DOI:10.1109/tcsvt.2023.3234312
摘要

Facial expression recognition (FER) becomes more challenging in the wild due to unconstrained conditions, such as the different illumination, pose changes, and occlusion of the face. Current FER methods deploy the attention mechanism in deep neural networks to improve the performance. However, these models only capture the limited attention features and relationships. Thus this paper proposes a novel FER framework called multi-relations aware network (MRAN), which can focus on global and local attention features and learn the multi-level relationships among local regions, between global-local features and among different samples, to obtain efficient emotional features. Specifically, our method first imposes the spatial attention on both the whole face and local regions to simultaneously learn the global and local salient features. After that, a region relation transformer is deployed to capture the internal structure among local facial regions, and a global-local relation transformer is designed to learn the fusion relations between global features and local features for different facial expressions. Subsequently, a sample relation transformer is deployed to focus on intrinsic similarity relationship among training samples, which promotes invariant feature learning for each expression. Finally, a joint optimization strategy is designed to efficiently optimize the model. The conducted experimental results on in-the-wild databases show that our method obtains the superior performance compared to some state-of-the-art models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
清风明月完成签到 ,获得积分10
1秒前
bkagyin应助苏沐阳采纳,获得10
2秒前
3秒前
6秒前
在在发布了新的文献求助10
7秒前
阮俏发布了新的文献求助30
11秒前
14秒前
16秒前
Lliu应助透彻含义采纳,获得10
16秒前
wanci应助阮俏采纳,获得30
19秒前
xiuxiu完成签到 ,获得积分0
20秒前
杨同学完成签到,获得积分10
21秒前
chengymao发布了新的文献求助10
21秒前
木子完成签到 ,获得积分10
21秒前
赘婿应助科研通管家采纳,获得30
26秒前
26秒前
26秒前
脑洞疼应助hu采纳,获得10
28秒前
老大黎明完成签到,获得积分20
30秒前
35秒前
222333发布了新的文献求助10
35秒前
天选小牛马完成签到 ,获得积分10
36秒前
haprier完成签到 ,获得积分10
42秒前
AM发布了新的文献求助30
45秒前
打打应助王冰洁采纳,获得100
47秒前
50秒前
51秒前
53秒前
大宝君发布了新的文献求助30
54秒前
56秒前
tczw667完成签到,获得积分10
57秒前
行者发布了新的文献求助10
57秒前
小章完成签到,获得积分10
58秒前
夏律发布了新的文献求助10
58秒前
59秒前
yang完成签到 ,获得积分10
59秒前
59秒前
1分钟前
王冰洁发布了新的文献求助100
1分钟前
吴中秋发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 640
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573236
求助须知:如何正确求助?哪些是违规求助? 4659412
关于积分的说明 14724454
捐赠科研通 4599168
什么是DOI,文献DOI怎么找? 2524154
邀请新用户注册赠送积分活动 1494679
关于科研通互助平台的介绍 1464704