亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Convolutional Feature Descriptor Selection for Mammogram Classification

判别式 人工智能 计算机科学 卷积神经网络 模式识别(心理学) 特征选择 深度学习 特征(语言学) 特征提取 联营 分割 乳腺摄影术 乳腺癌 机器学习 癌症 医学 哲学 内科学 语言学
作者
Dong Li,Lei Zhang,Jianwei Zhang,Xingyu Xie
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:27 (3): 1467-1476 被引量:2
标识
DOI:10.1109/jbhi.2022.3233535
摘要

Breast cancer was the most commonly diagnosed cancer among women worldwide in 2020. Recently, several deep learning-based classification approaches have been proposed to screen breast cancer in mammograms. However, most of these approaches require additional detection or segmentation annotations. Meanwhile, some other image-level label-based methods often pay insufficient attention to lesion areas, which are critical for diagnosis. This study designs a novel deep-learning method for automatically diagnosing breast cancer in mammography, which focuses on the local lesion areas and only utilizes image-level classification labels. In this study, we propose to select discriminative feature descriptors from feature maps instead of identifying lesion areas using precise annotations. And we design a novel adaptive convolutional feature descriptor selection (AFDS) structure based on the distribution of the deep activation map. Specifically, we adopt the triangle threshold strategy to calculate a specific threshold for guiding the activation map to determine which feature descriptors (local areas) are discriminative. Ablation experiments and visualization analysis indicate that the AFDS structure makes the model easier to learn the difference between malignant and benign/normal lesions. Furthermore, since the AFDS structure can be regarded as a highly efficient pooling structure, it can be easily plugged into most existing convolutional neural networks with negligible effort and time consumption. Experimental results on two publicly available INbreast and CBIS-DDSM datasets indicate that the proposed method performs satisfactorily compared with state-of-the-art methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kuoping完成签到,获得积分0
16秒前
24秒前
NattyPoe发布了新的文献求助10
27秒前
daihq3发布了新的文献求助10
29秒前
刘烨完成签到 ,获得积分10
33秒前
51秒前
53秒前
所所应助han采纳,获得10
1分钟前
1分钟前
1分钟前
han发布了新的文献求助10
1分钟前
daihq3完成签到,获得积分10
1分钟前
ss完成签到,获得积分10
1分钟前
1分钟前
香蕉觅云应助ss采纳,获得10
1分钟前
1分钟前
NattyPoe发布了新的文献求助10
1分钟前
han完成签到,获得积分20
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
俏皮的安萱完成签到 ,获得积分10
2分钟前
淡淡二娘完成签到,获得积分10
2分钟前
在水一方应助yunshui采纳,获得10
2分钟前
2分钟前
yunshui发布了新的文献求助10
2分钟前
2分钟前
领导范儿应助ODN采纳,获得10
3分钟前
3分钟前
3分钟前
3分钟前
ss发布了新的文献求助10
3分钟前
3分钟前
Raien发布了新的文献求助10
3分钟前
Raien完成签到,获得积分10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
4分钟前
NattyPoe发布了新的文献求助10
4分钟前
wtian完成签到,获得积分10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5639644
求助须知:如何正确求助?哪些是违规求助? 4749473
关于积分的说明 15006976
捐赠科研通 4797793
什么是DOI,文献DOI怎么找? 2563888
邀请新用户注册赠送积分活动 1522798
关于科研通互助平台的介绍 1482492