Convolutional Feature Descriptor Selection for Mammogram Classification

判别式 人工智能 计算机科学 卷积神经网络 模式识别(心理学) 特征选择 深度学习 特征(语言学) 特征提取 联营 分割 乳腺摄影术 乳腺癌 机器学习 癌症 医学 哲学 内科学 语言学
作者
Dong Li,Lei Zhang,Jianwei Zhang,Xingyu Xie
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:27 (3): 1467-1476 被引量:2
标识
DOI:10.1109/jbhi.2022.3233535
摘要

Breast cancer was the most commonly diagnosed cancer among women worldwide in 2020. Recently, several deep learning-based classification approaches have been proposed to screen breast cancer in mammograms. However, most of these approaches require additional detection or segmentation annotations. Meanwhile, some other image-level label-based methods often pay insufficient attention to lesion areas, which are critical for diagnosis. This study designs a novel deep-learning method for automatically diagnosing breast cancer in mammography, which focuses on the local lesion areas and only utilizes image-level classification labels. In this study, we propose to select discriminative feature descriptors from feature maps instead of identifying lesion areas using precise annotations. And we design a novel adaptive convolutional feature descriptor selection (AFDS) structure based on the distribution of the deep activation map. Specifically, we adopt the triangle threshold strategy to calculate a specific threshold for guiding the activation map to determine which feature descriptors (local areas) are discriminative. Ablation experiments and visualization analysis indicate that the AFDS structure makes the model easier to learn the difference between malignant and benign/normal lesions. Furthermore, since the AFDS structure can be regarded as a highly efficient pooling structure, it can be easily plugged into most existing convolutional neural networks with negligible effort and time consumption. Experimental results on two publicly available INbreast and CBIS-DDSM datasets indicate that the proposed method performs satisfactorily compared with state-of-the-art methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hiiiiii发布了新的文献求助10
刚刚
刚刚
敬之发布了新的文献求助10
1秒前
研友_VZG7GZ应助清欢采纳,获得10
1秒前
1秒前
1秒前
可爱的函函应助谦让靖儿采纳,获得10
2秒前
wei998发布了新的文献求助10
2秒前
隐形曼青应助liu采纳,获得10
3秒前
3秒前
3秒前
6秒前
6秒前
戴明杰发布了新的文献求助30
6秒前
CodeCraft应助琢钰采纳,获得10
7秒前
量子星尘发布了新的文献求助10
8秒前
wxx771510625发布了新的文献求助10
9秒前
浅风发布了新的文献求助10
9秒前
明亮的小蘑菇完成签到 ,获得积分10
9秒前
慧子完成签到,获得积分10
9秒前
10秒前
10秒前
11秒前
11秒前
脂肪小米粥完成签到,获得积分20
12秒前
yznfly应助仙影沫采纳,获得20
13秒前
畅快的小懒虫完成签到,获得积分10
13秒前
13秒前
13秒前
14秒前
KIKI发布了新的文献求助10
14秒前
爆米花应助爱意采纳,获得10
15秒前
15秒前
星辰大海应助敬之采纳,获得10
15秒前
幽默阑悦完成签到,获得积分10
15秒前
偶棉套完成签到,获得积分10
16秒前
16秒前
16秒前
小墨在学习完成签到,获得积分10
16秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642103
求助须知:如何正确求助?哪些是违规求助? 4758150
关于积分的说明 15016411
捐赠科研通 4800600
什么是DOI,文献DOI怎么找? 2566140
邀请新用户注册赠送积分活动 1524244
关于科研通互助平台的介绍 1483901