Convolutional Feature Descriptor Selection for Mammogram Classification

判别式 人工智能 计算机科学 卷积神经网络 模式识别(心理学) 特征选择 深度学习 特征(语言学) 特征提取 联营 分割 乳腺摄影术 乳腺癌 机器学习 癌症 医学 哲学 内科学 语言学
作者
Dong Li,Lei Zhang,Jianwei Zhang,Xingyu Xie
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:27 (3): 1467-1476 被引量:2
标识
DOI:10.1109/jbhi.2022.3233535
摘要

Breast cancer was the most commonly diagnosed cancer among women worldwide in 2020. Recently, several deep learning-based classification approaches have been proposed to screen breast cancer in mammograms. However, most of these approaches require additional detection or segmentation annotations. Meanwhile, some other image-level label-based methods often pay insufficient attention to lesion areas, which are critical for diagnosis. This study designs a novel deep-learning method for automatically diagnosing breast cancer in mammography, which focuses on the local lesion areas and only utilizes image-level classification labels. In this study, we propose to select discriminative feature descriptors from feature maps instead of identifying lesion areas using precise annotations. And we design a novel adaptive convolutional feature descriptor selection (AFDS) structure based on the distribution of the deep activation map. Specifically, we adopt the triangle threshold strategy to calculate a specific threshold for guiding the activation map to determine which feature descriptors (local areas) are discriminative. Ablation experiments and visualization analysis indicate that the AFDS structure makes the model easier to learn the difference between malignant and benign/normal lesions. Furthermore, since the AFDS structure can be regarded as a highly efficient pooling structure, it can be easily plugged into most existing convolutional neural networks with negligible effort and time consumption. Experimental results on two publicly available INbreast and CBIS-DDSM datasets indicate that the proposed method performs satisfactorily compared with state-of-the-art methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
黄小米完成签到,获得积分20
1秒前
科研通AI6应助1816013153采纳,获得10
1秒前
雨_完成签到,获得积分10
1秒前
可可派完成签到,获得积分10
3秒前
0001完成签到,获得积分10
3秒前
汉堡包应助等待水绿采纳,获得10
3秒前
3秒前
4秒前
5秒前
徐立涛完成签到,获得积分10
5秒前
科研通AI2S应助TT采纳,获得10
5秒前
乐乐应助执着的导师采纳,获得10
5秒前
汉堡包应助小张同学采纳,获得10
5秒前
小牛发布了新的文献求助10
9秒前
那年那兔那些事完成签到 ,获得积分10
10秒前
科研通AI6应助pin采纳,获得30
11秒前
11秒前
阿橘完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
12秒前
BowieHuang应助Rex采纳,获得10
12秒前
13秒前
赘婿应助小牛采纳,获得10
14秒前
DDD完成签到,获得积分10
14秒前
14秒前
虚心的如曼完成签到 ,获得积分10
14秒前
情怀应助黄小米采纳,获得30
15秒前
蚊子完成签到,获得积分10
15秒前
啊啊啊啊完成签到,获得积分10
16秒前
painting发布了新的文献求助10
16秒前
17秒前
17秒前
领导范儿应助葡萄小伊ovo采纳,获得10
17秒前
海盐气泡水完成签到,获得积分10
18秒前
晨晨完成签到,获得积分10
18秒前
21秒前
传奇3应助坚定的又莲采纳,获得10
21秒前
吧KO完成签到,获得积分10
21秒前
雪莉发布了新的文献求助10
22秒前
高分求助中
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Objective or objectionable? Ideological aspects of dictionaries 360
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5580844
求助须知:如何正确求助?哪些是违规求助? 4665585
关于积分的说明 14756750
捐赠科研通 4607138
什么是DOI,文献DOI怎么找? 2528135
邀请新用户注册赠送积分活动 1497453
关于科研通互助平台的介绍 1466427