Convolutional Feature Descriptor Selection for Mammogram Classification

判别式 人工智能 计算机科学 卷积神经网络 模式识别(心理学) 特征选择 深度学习 特征(语言学) 特征提取 联营 分割 乳腺摄影术 乳腺癌 机器学习 癌症 医学 哲学 内科学 语言学
作者
Dong Li,Lei Zhang,Jianwei Zhang,Xingyu Xie
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:27 (3): 1467-1476 被引量:2
标识
DOI:10.1109/jbhi.2022.3233535
摘要

Breast cancer was the most commonly diagnosed cancer among women worldwide in 2020. Recently, several deep learning-based classification approaches have been proposed to screen breast cancer in mammograms. However, most of these approaches require additional detection or segmentation annotations. Meanwhile, some other image-level label-based methods often pay insufficient attention to lesion areas, which are critical for diagnosis. This study designs a novel deep-learning method for automatically diagnosing breast cancer in mammography, which focuses on the local lesion areas and only utilizes image-level classification labels. In this study, we propose to select discriminative feature descriptors from feature maps instead of identifying lesion areas using precise annotations. And we design a novel adaptive convolutional feature descriptor selection (AFDS) structure based on the distribution of the deep activation map. Specifically, we adopt the triangle threshold strategy to calculate a specific threshold for guiding the activation map to determine which feature descriptors (local areas) are discriminative. Ablation experiments and visualization analysis indicate that the AFDS structure makes the model easier to learn the difference between malignant and benign/normal lesions. Furthermore, since the AFDS structure can be regarded as a highly efficient pooling structure, it can be easily plugged into most existing convolutional neural networks with negligible effort and time consumption. Experimental results on two publicly available INbreast and CBIS-DDSM datasets indicate that the proposed method performs satisfactorily compared with state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鲁滨逊发布了新的文献求助10
刚刚
泥巴发布了新的文献求助10
2秒前
ljz完成签到,获得积分10
2秒前
黄小黄完成签到,获得积分10
3秒前
3秒前
3秒前
大力的诗蕾完成签到 ,获得积分10
3秒前
海贼学术完成签到,获得积分10
4秒前
5秒前
唐唐关注了科研通微信公众号
6秒前
sandra发布了新的文献求助10
6秒前
6秒前
小羊完成签到,获得积分10
7秒前
8秒前
10秒前
zcl应助刻苦小鸭子采纳,获得50
10秒前
Wind发布了新的文献求助10
10秒前
automan完成签到,获得积分10
11秒前
斯文败类应助FuZh采纳,获得10
11秒前
Herman发布了新的文献求助30
12秒前
linjiaxin完成签到 ,获得积分10
12秒前
平平平平发布了新的文献求助10
13秒前
13秒前
hs完成签到,获得积分10
13秒前
丘比特应助jhzwc采纳,获得10
13秒前
14秒前
WW发布了新的文献求助10
14秒前
linjiaxin关注了科研通微信公众号
15秒前
浮游应助梅子采纳,获得10
15秒前
15秒前
nnn完成签到,获得积分10
15秒前
15秒前
慧慧子发布了新的文献求助10
15秒前
wlz发布了新的文献求助10
16秒前
16秒前
CY发布了新的文献求助10
16秒前
共享精神应助Yi采纳,获得10
17秒前
17秒前
18秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Investigative Interviewing: Psychology and Practice 300
Atlas of Anatomy (Fifth Edition) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5285299
求助须知:如何正确求助?哪些是违规求助? 4438487
关于积分的说明 13817325
捐赠科研通 4319766
什么是DOI,文献DOI怎么找? 2371149
邀请新用户注册赠送积分活动 1366693
关于科研通互助平台的介绍 1330152