DEVELOPMENT OF A MACHINE LEARNING MODEL FOR PREDICTING 28-DAY MORTALITY OF SEPTIC PATIENTS WITH ATRIAL FIBRILLATION

医学 接收机工作特性 心房颤动 逻辑回归 感染性休克 重症监护室 倾向得分匹配 阿达布思 队列 重症监护 机器学习 多元统计 回顾性队列研究 急诊医学 内科学 人工智能 重症监护医学 支持向量机 计算机科学 败血症
作者
Ziwen Wang,Linna Zhang,Yali Chao,Meng Xu,Xiaojuan Geng,Xiaoyi Hu
出处
期刊:Shock [Ovid Technologies (Wolters Kluwer)]
卷期号:59 (3): 400-408 被引量:6
标识
DOI:10.1097/shk.0000000000002078
摘要

Introduction: Septic patients with atrial fibrillation (AF) are common in the intensive care unit accompanied by high mortality. The early prediction of prognosis of these patients is critical for clinical intervention. This study aimed to develop a model by using machine learning (ML) algorithms to predict the risk of 28-day mortality in septic patients with AF. Methods: In this retrospective cohort study, we extracted septic patients with AF from the Medical Information Mart for Intensive Care III (MIMIC-III) and IV database. Afterward, only MIMIC-IV cohort was randomly divided into training or internal validation set. External validation set was mainly extracted from MIMIC-III database. Propensity score matching was used to reduce the imbalance between the external validation and internal validation data sets. The predictive factors for 28-day mortality were determined by using multivariate logistic regression. Then, we constructed models by using ML algorithms. Multiple metrics were used for evaluation of performance of the models, including the area under the receiver operating characteristic curve, sensitivity, specificity, recall, and accuracy. Results: A total of 5,317 septic patients with AF were enrolled, with 3,845 in the training set, 960 in the internal testing set, and 512 in the external testing set, respectively. Then, we established four prediction models by using ML algorithms. AdaBoost showed moderate performance and had a higher accuracy than the other three models. Compared with other severity scores, the AdaBoost obtained more net benefit. Conclusion: We established the first ML model for predicting the 28-day mortality of septic patients with AF. Compared with conventional scoring systems, the AdaBoost model performed moderately. The model established will have the potential to improve the level of clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
汤圆发布了新的文献求助10
3秒前
HXT完成签到,获得积分10
4秒前
6秒前
正函数完成签到,获得积分10
6秒前
6秒前
专注太英完成签到,获得积分10
7秒前
小孟发布了新的文献求助10
8秒前
9秒前
阳光he完成签到,获得积分10
9秒前
orixero应助小婷君采纳,获得10
9秒前
song完成签到,获得积分10
12秒前
专注太英发布了新的文献求助10
13秒前
SciGPT应助灵巧的飞雪采纳,获得20
17秒前
19秒前
helpme发布了新的文献求助100
21秒前
烟酒不离生完成签到,获得积分10
21秒前
研友_VZG7GZ应助杜青采纳,获得10
21秒前
tina完成签到 ,获得积分10
22秒前
23秒前
土豪的大白完成签到 ,获得积分10
24秒前
24秒前
NexusExplorer应助英俊延恶采纳,获得10
26秒前
1renebaebae发布了新的文献求助10
27秒前
28秒前
asdfg完成签到,获得积分20
29秒前
沧海青州发布了新的文献求助10
29秒前
科研通AI5应助拾柒采纳,获得10
30秒前
gyl完成签到 ,获得积分10
31秒前
跳跃金毛杨完成签到,获得积分20
31秒前
31秒前
刻苦冷菱发布了新的文献求助10
32秒前
32秒前
32秒前
归尘应助a981164373采纳,获得10
33秒前
34秒前
科目三应助小孟采纳,获得10
36秒前
幽默不乐发布了新的文献求助10
36秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
Dynamika przenośników łańcuchowych 600
Recent progress and new developments in post-combustion carbon-capture technology with reactive solvents 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3538611
求助须知:如何正确求助?哪些是违规求助? 3116370
关于积分的说明 9324948
捐赠科研通 2814129
什么是DOI,文献DOI怎么找? 1546497
邀请新用户注册赠送积分活动 720575
科研通“疑难数据库(出版商)”最低求助积分说明 712086