A Multi-Modal Approach For Context-Aware Network Traffic Classification

计算机科学 交通分类 人工智能 利用 特征提取 网络数据包 机器学习 深度学习 背景(考古学) 语义学(计算机科学) 特征(语言学) 数据挖掘 计算机网络 古生物学 计算机安全 生物 程序设计语言 语言学 哲学
作者
Bo Pang,Yongquan Fu,Siyuan Ren,Siqi Shen,Ye Wang,Qing Liao,Yan Jia
标识
DOI:10.1109/icassp49357.2023.10095124
摘要

Network traffic classification is important for network security and management. State-of-the-art classifiers use deep learning techniques to automatically extract feature vectors from the traffic, which however lose important context of the communication sessions and encapsulated text semantics. In this paper, we present a Multi-Modal Classification method named MTCM to systematically exploit the context for the classification task. We build an adaptive context-aware feature extraction framework over varying-length and dynamic packet sequences, based on the attention-aware graph neural networks and BERT. We next automatically fusion multimodal features with the Multi-Layer Perception (MLP) that unifies the graph and semantic features for the packet stream. Extensive evaluation with real-world application and abnormal network datasets show that MTCM outperforms state- of-the-art deep learning methods, and is robust for different classes of traffic data sets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
尊敬的钥匙完成签到,获得积分10
1秒前
2秒前
2秒前
赘婿应助无情的白桃采纳,获得10
2秒前
习习应助zhu96114748采纳,获得10
3秒前
英姑应助韭菜盒子采纳,获得10
3秒前
jbzmm完成签到 ,获得积分10
3秒前
36456657应助虚安采纳,获得10
4秒前
张真狗完成签到,获得积分10
4秒前
zz完成签到,获得积分10
4秒前
深情安青应助xxx采纳,获得10
4秒前
4秒前
yqf完成签到,获得积分10
5秒前
MADKAI发布了新的文献求助10
5秒前
乐乐应助燕尔蓝采纳,获得10
6秒前
JamesPei应助柔弱煎饼采纳,获得30
6秒前
习习应助甜甜的向卉采纳,获得10
6秒前
xunxunmimi发布了新的文献求助10
6秒前
6秒前
温暖哈密瓜完成签到 ,获得积分10
6秒前
7秒前
7秒前
7秒前
聆听雨完成签到,获得积分10
8秒前
Ymj完成签到,获得积分10
8秒前
怡然若雁完成签到,获得积分10
8秒前
8秒前
坚强亦丝应助游大达采纳,获得10
9秒前
@小小搬砖瑞完成签到,获得积分10
9秒前
怡然若雁发布了新的文献求助10
11秒前
coc关注了科研通微信公众号
11秒前
双双完成签到,获得积分10
11秒前
瑶625发布了新的文献求助10
11秒前
Strike完成签到,获得积分10
12秒前
调皮纸飞机完成签到,获得积分20
12秒前
董小李完成签到,获得积分10
12秒前
12秒前
研友_8yN60L完成签到,获得积分10
13秒前
zhanzhanzhan发布了新的文献求助10
13秒前
科研通AI5应助自爱悠然采纳,获得10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740