Machine Learning Approaches for Power System Parameters Prediction: A Systematic Review

网络拓扑 计算机科学 电力系统 决策树 预测建模 预测能力 机器学习 功率(物理) 网络模型 人工智能 拓扑(电路) 工程类 哲学 物理 认识论 量子力学 电气工程 操作系统
作者
Tolulope David Makanju,Thokozani Shongwe,Oluwole John Famoriji
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:12: 66646-66679
标识
DOI:10.1109/access.2024.3397676
摘要

Prediction in the power system network is very crucial as expansion is needed in the network. Several methods have been used to predict the load on a network, from short to long time load prediction, to ensure adequate planning for future use. Since the power system network is dynamic, other parameters, such as voltage and frequency prediction, are necessary for effective planning against contingencies. Also, most power systems are interconnected networks; using isolated variables to predict any part of the network tends to reduce prediction accuracy. This review analyzed different machine learning approaches used for load, frequency, and voltage prediction in power systems and proposed a machine learning predictive approach using network topology behavior as input variables to the model. The analysis of the proposed model was tested using a regression model, Decision tree regressor, and long short-term memory. The analysis results indicate that with network topology behavior as input to the model, the prediction will be more accurate than when isolated variables of a particular Bus in a network are used for prediction. This work suggests that network topology behavior data should be used for prediction in a power system network rather than the use of isolated data of a particular bus or exogenous data for prediction in a power system. Therefore, this research recommends that the accuracy of different predictive models be tested on power system parameters by hybridizing the network topology behavior dataset and the exogenous dataset.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
夕照古风发布了新的文献求助10
1秒前
马康辉应助畅快老虎采纳,获得100
2秒前
乐乐应助爱听歌的青筠采纳,获得10
2秒前
健忘的无色完成签到 ,获得积分10
4秒前
MILL完成签到,获得积分20
4秒前
5秒前
6秒前
大个应助ocean采纳,获得10
7秒前
了一发布了新的文献求助10
8秒前
Akim应助科研小白鼠采纳,获得10
8秒前
Luffa完成签到,获得积分10
8秒前
crescendo发布了新的文献求助10
9秒前
9秒前
Cai关闭了Cai文献求助
10秒前
老王吃烧烤应助上官靖采纳,获得10
10秒前
11秒前
klony发布了新的文献求助30
11秒前
量子星尘发布了新的文献求助10
11秒前
14秒前
14秒前
15秒前
月上柳梢头A1完成签到,获得积分10
20秒前
lw777发布了新的文献求助10
20秒前
希望天下0贩的0应助小周采纳,获得10
20秒前
爱听歌的青筠完成签到,获得积分10
20秒前
pride发布了新的文献求助10
20秒前
橘子发布了新的文献求助10
21秒前
杨佳睿完成签到 ,获得积分10
21秒前
Owen应助chenbo采纳,获得10
23秒前
23秒前
NexusExplorer应助雪白的面包采纳,获得10
23秒前
zyl完成签到 ,获得积分10
23秒前
Lucas应助lw777采纳,获得10
24秒前
李健的小迷弟应助半凡采纳,获得10
25秒前
25秒前
可爱的坤完成签到,获得积分10
26秒前
苏苏发布了新的文献求助10
27秒前
汪汪完成签到,获得积分10
28秒前
28秒前
顾矜应助Han采纳,获得10
29秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979840
求助须知:如何正确求助?哪些是违规求助? 3523885
关于积分的说明 11219083
捐赠科研通 3261375
什么是DOI,文献DOI怎么找? 1800602
邀请新用户注册赠送积分活动 879189
科研通“疑难数据库(出版商)”最低求助积分说明 807202