Multi-View Time-Series Hypergraph Neural Network for Action Recognition

超图 计算机科学 人工智能 RGB颜色模型 系列(地层学) 人工神经网络 循环神经网络 动作(物理) 模式识别(心理学) 对象(语法) 序列(生物学) 计算机视觉 数学 古生物学 离散数学 生物 物理 遗传学 量子力学
作者
Nan Ma,Zhixuan Wu,Yifan Feng,Cheng Wang,Yue Gao
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 3301-3313 被引量:3
标识
DOI:10.1109/tip.2024.3391913
摘要

Recently, action recognition has attracted considerable attention in the field of computer vision. In dynamic circumstances and complicated backgrounds, there are some problems, such as object occlusion, insufficient light, and weak correlation of human body joints, resulting in skeleton-based human action recognition accuracy being very low. To address this issue, we propose a Multi-View Time-Series Hypergraph Neural Network (MV-TSHGNN) method. The framework is composed of two main parts: the construction of a multi-view time-series hypergraph structure and the learning process of multi-view time-series hypergraph convolutions. Specifically, given the multi-view video sequence frames, we first extract the joint features of actions from different views. Then, limb components and adjacent joints spatial hypergraphs based on the joints of different views at the same time are constructed respectively, temporal hypergraphs are constructed joints of the same view at continuous times, which are established high-order semantic relationships and cooperatively generate complementary action features. After that, we design a multi-view time-series hypergraph neural network to efficiently learn the features of spatial and temporal hypergraphs, and effectively improve the accuracy of skeleton-based action recognition. To evaluate the effectiveness and efficiency of MV-TSHGNN, we conduct experiments on NTU RGB+D, NTU RGB+D 120 and imitating traffic police gestures datasets. The experimental results indicate that our proposed method model achieves the new state-of-the-art performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
孤独收割人完成签到,获得积分10
2秒前
3秒前
cys发布了新的文献求助10
3秒前
4秒前
小香香完成签到 ,获得积分10
5秒前
zz完成签到,获得积分10
7秒前
杨一完成签到 ,获得积分10
8秒前
9秒前
健忘的老姆完成签到 ,获得积分10
10秒前
英姑应助麦满分采纳,获得10
12秒前
在水一方应助kk子采纳,获得10
12秒前
13秒前
13秒前
科研通AI2S应助silentforsure采纳,获得10
13秒前
14秒前
朱瑶君完成签到,获得积分10
14秒前
乐乐应助如是采纳,获得10
17秒前
浑傲白完成签到,获得积分10
19秒前
深情安青应助柠檬采纳,获得10
19秒前
hsj关闭了hsj文献求助
20秒前
情怀应助科研通管家采纳,获得10
21秒前
乐乐应助科研通管家采纳,获得10
21秒前
bkagyin应助科研通管家采纳,获得10
21秒前
不配.应助科研通管家采纳,获得10
21秒前
21秒前
不配.应助科研通管家采纳,获得10
21秒前
tachikoma应助科研通管家采纳,获得10
22秒前
22秒前
SS完成签到,获得积分20
22秒前
行僧完成签到 ,获得积分10
23秒前
点凌蝶完成签到,获得积分10
23秒前
英俊的铭应助彭医生采纳,获得10
24秒前
无花果应助张清采纳,获得10
25秒前
李爱国应助舒心的雨双采纳,获得10
26秒前
小小研究僧。完成签到,获得积分10
27秒前
明亮枫发布了新的文献求助10
28秒前
29秒前
顾矜应助我来也采纳,获得10
30秒前
31秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
SIS-ISO/IEC TS 27100:2024 Information technology — Cybersecurity — Overview and concepts (ISO/IEC TS 27100:2020, IDT)(Swedish Standard) 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3233196
求助须知:如何正确求助?哪些是违规求助? 2879802
关于积分的说明 8212752
捐赠科研通 2547256
什么是DOI,文献DOI怎么找? 1376718
科研通“疑难数据库(出版商)”最低求助积分说明 647682
邀请新用户注册赠送积分活动 623086