Multi-View Time-Series Hypergraph Neural Network for Action Recognition

超图 计算机科学 人工智能 RGB颜色模型 系列(地层学) 人工神经网络 循环神经网络 动作(物理) 模式识别(心理学) 对象(语法) 序列(生物学) 计算机视觉 数学 古生物学 离散数学 生物 物理 遗传学 量子力学
作者
Nan Ma,Zhixuan Wu,Yifan Feng,Cheng Wang,Yue Gao
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 3301-3313 被引量:8
标识
DOI:10.1109/tip.2024.3391913
摘要

Recently, action recognition has attracted considerable attention in the field of computer vision. In dynamic circumstances and complicated backgrounds, there are some problems, such as object occlusion, insufficient light, and weak correlation of human body joints, resulting in skeleton-based human action recognition accuracy being very low. To address this issue, we propose a Multi-View Time-Series Hypergraph Neural Network (MV-TSHGNN) method. The framework is composed of two main parts: the construction of a multi-view time-series hypergraph structure and the learning process of multi-view time-series hypergraph convolutions. Specifically, given the multi-view video sequence frames, we first extract the joint features of actions from different views. Then, limb components and adjacent joints spatial hypergraphs based on the joints of different views at the same time are constructed respectively, temporal hypergraphs are constructed joints of the same view at continuous times, which are established high-order semantic relationships and cooperatively generate complementary action features. After that, we design a multi-view time-series hypergraph neural network to efficiently learn the features of spatial and temporal hypergraphs, and effectively improve the accuracy of skeleton-based action recognition. To evaluate the effectiveness and efficiency of MV-TSHGNN, we conduct experiments on NTU RGB+D, NTU RGB+D 120 and imitating traffic police gestures datasets. The experimental results indicate that our proposed method model achieves the new state-of-the-art performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
clinlinlinlin发布了新的文献求助10
刚刚
雪白的山雁完成签到 ,获得积分10
刚刚
1秒前
IvanMcRae发布了新的文献求助60
2秒前
矛盾螺旋完成签到,获得积分10
2秒前
无尘泪完成签到,获得积分10
2秒前
lll发布了新的文献求助10
3秒前
白白1207发布了新的文献求助10
3秒前
乐观小之应助科研通管家采纳,获得10
4秒前
田様应助科研通管家采纳,获得10
4秒前
小马甲应助科研通管家采纳,获得10
4秒前
Orange应助科研通管家采纳,获得10
4秒前
慕青应助科研通管家采纳,获得10
4秒前
4秒前
SciGPT应助funny采纳,获得10
4秒前
李健应助科研通管家采纳,获得10
4秒前
ding应助刘家小姐姐采纳,获得10
4秒前
852应助科研通管家采纳,获得10
4秒前
斯文败类应助科研通管家采纳,获得10
5秒前
脑洞疼应助科研通管家采纳,获得10
5秒前
5秒前
酷波er应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
研友_VZG7GZ应助科研通管家采纳,获得10
5秒前
5秒前
Orange应助科研通管家采纳,获得10
5秒前
量子星尘发布了新的文献求助10
6秒前
Linda发布了新的文献求助10
7秒前
CodeCraft应助lll采纳,获得10
11秒前
化学学渣完成签到,获得积分10
12秒前
12秒前
12秒前
12秒前
爆米花应助1234采纳,获得10
12秒前
12秒前
yongjie发布了新的文献求助10
13秒前
大胖完成签到,获得积分10
14秒前
14秒前
vousme完成签到 ,获得积分10
14秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956244
求助须知:如何正确求助?哪些是违规求助? 3502445
关于积分的说明 11107634
捐赠科研通 3233093
什么是DOI,文献DOI怎么找? 1787120
邀请新用户注册赠送积分活动 870498
科研通“疑难数据库(出版商)”最低求助积分说明 802086