GoogLeNet-AL: A Fully Automated Adaptive Model for Lung Cancer Detection

计算机科学 肺癌 人工智能 癌症检测 模式识别(心理学) 癌症 计算机视觉 医学 病理 内科学
作者
Lei Ma,Huiqun Wu,P. Samundeeswari
出处
期刊:Pattern Recognition [Elsevier BV]
卷期号:: 110657-110657
标识
DOI:10.1016/j.patcog.2024.110657
摘要

As lung cancer has emerged as the top contributor to cancer-related fatalities, efficient and precise diagnostic methods are essential for efficient diagnosis. This research introduces a novel CNN architecture GoogLeNet with Adaptive Layers (GoogLeNet-AL) for lung cancer detection. The GoogLeNet-AL architecture integrates innovative features such as squeeze-and-excitation blocks, dilated convolutions, depthwise separable convolutions, group convolutions, non-local blocks, octave convolutions, inverted Residuals, and ghost convolutions in the inception layers to boost the potential of GoogleNet-Al to capture multi-scale features efficiently. The GoogleNet-Al model has been implemented in the PyTorch 1.8.1 platform and trained using publicly accessible datasets IQ-OTH/NCCD and Chest CT-Scan for comprehensive performance evaluation. Additionally, we employ data augmentation, stratified sampling, and fairness-aware training to enhance robustness and mitigate biases. The experimental assessment demonstrate that the GoogLeNet-AL method achieves an accuracy of 98.74%, an F1-score of 98.96%, and a precision of 99.74% in lung cancer detection and also demonstrates its superior performance by outperforming traditional GoogLeNet and other baseline models. Overall, the proposed architecture enhanced the detection and categorization of lung nodules by reducing false positives and negatives, thus offering a valuable tool for combating lung cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
现代子默完成签到,获得积分10
刚刚
2秒前
在水一方应助顾北采纳,获得10
2秒前
顾矜应助科研通管家采纳,获得10
3秒前
斯文败类应助科研通管家采纳,获得10
3秒前
华仔应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
3秒前
3秒前
3秒前
在写了完成签到,获得积分10
4秒前
顾矜应助细心的凡桃采纳,获得10
6秒前
量子星尘发布了新的文献求助10
6秒前
sjie完成签到 ,获得积分10
6秒前
zym999999发布了新的文献求助10
7秒前
嗨是完成签到,获得积分10
9秒前
9秒前
9秒前
开心的渊思完成签到,获得积分10
10秒前
11秒前
11秒前
wwl发布了新的文献求助10
12秒前
彭于晏应助怡然小蚂蚁采纳,获得10
13秒前
领导范儿应助现代子默采纳,获得10
13秒前
顾北发布了新的文献求助10
15秒前
17秒前
18秒前
wwl完成签到,获得积分10
18秒前
海东来应助昂昂采纳,获得20
20秒前
桐桐应助zym999999采纳,获得10
21秒前
JEAN发布了新的文献求助10
21秒前
daijk发布了新的文献求助10
21秒前
团团完成签到,获得积分10
23秒前
24秒前
24秒前
26秒前
27秒前
骆展羽完成签到 ,获得积分10
27秒前
Dotson发布了新的文献求助10
29秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958051
求助须知:如何正确求助?哪些是违规求助? 3504213
关于积分的说明 11117431
捐赠科研通 3235582
什么是DOI,文献DOI怎么找? 1788318
邀请新用户注册赠送积分活动 871204
科研通“疑难数据库(出版商)”最低求助积分说明 802511