Sparse-view Spectral CT Reconstruction and Material Decomposition based on Multi-channel SGM

迭代重建 分解 计算机科学 人工智能 计算机视觉 频道(广播) 算法 化学 电信 有机化学
作者
Yuedong Liu,Xuan Zhou,Cunfeng Wei,Qiong Xu
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:3
标识
DOI:10.1109/tmi.2024.3413085
摘要

In medical applications, the diffusion of contrast agents in tissue can reflect the physiological function of organisms, so it is valuable to quantify the distribution and content of contrast agents in the body over a period. Spectral CT has the advantages of multi-energy projection acquisition and material decomposition, which can quantify K-edge contrast agents. However, multiple repetitive spectral CT scans can cause excessive radiation doses. Sparse-view scanning is commonly used to reduce dose and scan time, but its reconstructed images are usually accompanied by streaking artifacts, which leads to inaccurate quantification of the contrast agents. To solve this problem, an unsupervised sparse-view spectral CT reconstruction and material decomposition algorithm based on the multi-channel score-based generative model (SGM) is proposed in this paper. First, multi-energy images and tissue images are used as multi-channel input data for SGM training. Secondly, the organism is multiply scanned in sparse views, and the trained SGM is utilized to generate multi-energy images and tissue images driven by sparse-view projections. After that, a material decomposition algorithm using tissue images generated by SGM as prior images for solving contrast agent images is established. Finally, the distribution and content of the contrast agents are obtained. The comparison and evaluation of this method are given in this paper, and a series of mouse scanning experiments are carried out to verify the effectiveness of the method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Shine完成签到 ,获得积分10
刚刚
喜嘻发布了新的文献求助10
刚刚
1秒前
CodeCraft应助葉芊羽采纳,获得10
1秒前
1秒前
hashtag发布了新的文献求助10
2秒前
2秒前
娜娜liuna完成签到,获得积分10
3秒前
scott910806完成签到,获得积分10
4秒前
羊咩咩发布了新的文献求助10
4秒前
4秒前
FG发布了新的文献求助10
5秒前
哈哈哈应助干净初彤采纳,获得50
6秒前
BillHong应助神勇的若灵采纳,获得10
6秒前
6秒前
Lululu发布了新的文献求助10
6秒前
阿航发布了新的文献求助10
6秒前
共享精神应助陈咬金采纳,获得10
7秒前
7秒前
zyy发布了新的文献求助10
7秒前
8秒前
哈人的猫发布了新的文献求助10
8秒前
安静如之完成签到,获得积分10
9秒前
9秒前
滴滴哒哒发布了新的文献求助10
9秒前
9秒前
9秒前
xi完成签到,获得积分20
10秒前
10秒前
10秒前
情怀应助谦让的樱采纳,获得10
11秒前
11秒前
12秒前
12秒前
12秒前
13秒前
英俊的铭应助baby采纳,获得10
13秒前
脑洞疼应助asdaas采纳,获得10
14秒前
14秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3488637
求助须知:如何正确求助?哪些是违规求助? 3076232
关于积分的说明 9144270
捐赠科研通 2768577
什么是DOI,文献DOI怎么找? 1519188
邀请新用户注册赠送积分活动 703703
科研通“疑难数据库(出版商)”最低求助积分说明 701952