亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

ALF-YOLO: Enhanced YOLOv8 based on multiscale attention feature fusion for ship detection

特征(语言学) 人工智能 计算机科学 融合 模式识别(心理学) 计算机视觉 语言学 哲学
作者
Siwen Wang,Ying Li,Sihai Qiao
出处
期刊:Ocean Engineering [Elsevier]
卷期号:308: 118233-118233 被引量:64
标识
DOI:10.1016/j.oceaneng.2024.118233
摘要

Ship detection plays a crucial role in ensuring maritime transportation and navigation safety. However, accurately detecting multiscale ships remains a challenge due to the diversity of ship categories and locations, as well as interference from complex environments. Object detectors based on the You Only Look Once (YOLO) framework have demonstrated remarkable accuracy in automatic ship detection. In this paper, we integrate the Asymptotic Feature Pyramid Network (AFPN), Large Selective Kernel Attention Mechanism (LSK), and the fourth detection head into YOLOv8, developing a novel ALF-YOLO architecture. ALF-YOLO utilizes AFPN to enrich feature representation by integrating multiscale high-level semantic features and spatial details. It also incorporates a large selective kernel attention mechanism that dynamically adjusts its large spatial receptive field to focus more on crucial ship features, eliminating interference from complex environmental factors to enhance discriminative feature representations of ships. Additionally, we investigate the impact of different attention mechanisms on ship detection accuracy. Experimental results indicate that by integrating the outputs of several modules, our proposed ALF-YOLO model improves the classification and localization capability of targets at each stage. Compared to YOLOv8, ALF-YOLO achieved a relative increase of 0.41% and 0.43% in [email protected] on the Seaships and McShips datasets, respectively. Across different evaluation criteria, the overall performance of the ALF-YOLO method surpasses existing ship detection methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
狂野的衬衫完成签到,获得积分10
1秒前
9秒前
lululu完成签到 ,获得积分10
14秒前
我不吃辐射关注了科研通微信公众号
16秒前
思源应助洁净路灯采纳,获得10
26秒前
28秒前
吾日三省吾身完成签到 ,获得积分10
32秒前
胖胖糖完成签到,获得积分10
40秒前
Jasper应助狂野的衬衫采纳,获得30
47秒前
黑煤球子关注了科研通微信公众号
52秒前
54秒前
57秒前
1分钟前
1分钟前
1分钟前
胖胖糖发布了新的文献求助10
1分钟前
1分钟前
1分钟前
943034197发布了新的文献求助10
1分钟前
黑煤球子发布了新的文献求助10
1分钟前
AltairKing发布了新的文献求助10
1分钟前
今后应助George采纳,获得10
1分钟前
943034197完成签到,获得积分10
1分钟前
1分钟前
Orange应助明亮嘉熙采纳,获得10
1分钟前
1分钟前
flyinthesky完成签到,获得积分10
1分钟前
1分钟前
Panther完成签到,获得积分10
1分钟前
今后应助圆滚滚的大肥猫采纳,获得10
1分钟前
明亮嘉熙发布了新的文献求助10
1分钟前
1分钟前
1分钟前
张晓祁完成签到,获得积分10
1分钟前
sfwrbh发布了新的文献求助10
1分钟前
丘比特应助狂野的衬衫采纳,获得30
1分钟前
赣南橙发布了新的文献求助10
1分钟前
Auralis完成签到 ,获得积分10
1分钟前
星辰大海应助sfwrbh采纳,获得10
1分钟前
yueying完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5595689
求助须知:如何正确求助?哪些是违规求助? 4680968
关于积分的说明 14818141
捐赠科研通 4651863
什么是DOI,文献DOI怎么找? 2535577
邀请新用户注册赠送积分活动 1503527
关于科研通互助平台的介绍 1469759