亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Application of Adaptive Algorithms in Smart Building Design Optimisation

计算机科学 算法
作者
Q. Li,Jingjing Zhu,Han Li
出处
期刊:Applied mathematics and nonlinear sciences [De Gruyter]
卷期号:9 (1)
标识
DOI:10.2478/amns-2024-1452
摘要

Abstract How to realize the unity of safety, comfort, and economy of building structures has been a hot spot of concern in the field of construction engineering. This paper searches for optimal particles using a hybrid optimization strategy and optimizes the weights of each index in the fitness function into the same interval. Then dynamic inertia weights are used to improve the performance of the algorithm, and an enhanced adaptive particle swarm algorithm is obtained. After selecting the optimization variables for the building design, the objective function and constraints are designed, and the improved particle swarm algorithm is used to solve the optimal design of the intelligent building. The total weight of the target building structure was reduced after optimization, and 47.04% of the building materials were saved. The outer diameter of the steel pipe concrete at the lowest level of the building increases from 1.73m to 2.06m after optimization, which fulfills the law of column change in building design. It has also been found that the wind resistance of the optimized building structure has improved. This paper provides a reliable basis for the application of adaptive algorithms in building design optimization, and the proposed method also provides an effective reference for the field of construction engineering.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
自信寻真发布了新的文献求助10
1秒前
霸气乐菱发布了新的文献求助10
1秒前
2秒前
2秒前
烟花应助我心向明月采纳,获得10
4秒前
missing完成签到 ,获得积分10
4秒前
5秒前
5秒前
Pauline完成签到 ,获得积分10
6秒前
7秒前
GDL发布了新的文献求助10
9秒前
鲤鱼小鸽子完成签到,获得积分20
9秒前
9秒前
梦梦发布了新的文献求助10
13秒前
着急的猴发布了新的文献求助80
17秒前
深情安青应助GDL采纳,获得10
18秒前
27秒前
jj发布了新的文献求助20
28秒前
涵涵涵hh完成签到 ,获得积分10
29秒前
34秒前
量子星尘发布了新的文献求助10
36秒前
绫小路发布了新的文献求助10
37秒前
开朗若之完成签到 ,获得积分10
39秒前
彭于晏应助梦梦采纳,获得10
39秒前
可爱的函函应助jj采纳,获得10
47秒前
yan完成签到,获得积分10
50秒前
梦梦完成签到,获得积分10
52秒前
科研通AI6应助科研通管家采纳,获得10
54秒前
科研通AI6应助科研通管家采纳,获得10
54秒前
54秒前
俏皮的安萱完成签到 ,获得积分10
1分钟前
Clementine发布了新的文献求助10
1分钟前
921完成签到,获得积分10
1分钟前
wanci应助晚意意意意意采纳,获得10
1分钟前
慕青应助晚意意意意意采纳,获得10
1分钟前
赘婿应助晚意意意意意采纳,获得10
1分钟前
1分钟前
Orange应助晚意意意意意采纳,获得10
1分钟前
1分钟前
Lucas应助晚意意意意意采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5714225
求助须知:如何正确求助?哪些是违规求助? 5221821
关于积分的说明 15272955
捐赠科研通 4865714
什么是DOI,文献DOI怎么找? 2612313
邀请新用户注册赠送积分活动 1562449
关于科研通互助平台的介绍 1519671