亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multi-Agent Reinforcement Learning with Hierarchical Coordination for Emergency Responder Stationing

强化学习 第一响应者 钢筋 计算机科学 基于Agent的模型 人工智能 心理学 医疗急救 医学 社会心理学
作者
Amutheezan Sivagnanam,Geoffrey Pettet,Hunter Lee,Ayan Mukhopadhyay,Abhishek Dubey,Áron Lászka
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2405.13205
摘要

An emergency responder management (ERM) system dispatches responders, such as ambulances, when it receives requests for medical aid. ERM systems can also proactively reposition responders between predesignated waiting locations to cover any gaps that arise due to the prior dispatch of responders or significant changes in the distribution of anticipated requests. Optimal repositioning is computationally challenging due to the exponential number of ways to allocate responders between locations and the uncertainty in future requests. The state-of-the-art approach in proactive repositioning is a hierarchical approach based on spatial decomposition and online Monte Carlo tree search, which may require minutes of computation for each decision in a domain where seconds can save lives. We address the issue of long decision times by introducing a novel reinforcement learning (RL) approach, based on the same hierarchical decomposition, but replacing online search with learning. To address the computational challenges posed by large, variable-dimensional, and discrete state and action spaces, we propose: (1) actor-critic based agents that incorporate transformers to handle variable-dimensional states and actions, (2) projections to fixed-dimensional observations to handle complex states, and (3) combinatorial techniques to map continuous actions to discrete allocations. We evaluate our approach using real-world data from two U.S. cities, Nashville, TN and Seattle, WA. Our experiments show that compared to the state of the art, our approach reduces computation time per decision by three orders of magnitude, while also slightly reducing average ambulance response time by 5 seconds.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英勇小伙发布了新的文献求助10
1秒前
yungm完成签到,获得积分10
1秒前
2秒前
kk_1315完成签到,获得积分10
6秒前
yungm发布了新的文献求助10
8秒前
wuyuyu5413完成签到,获得积分10
9秒前
10秒前
wuyuyu5413发布了新的文献求助10
14秒前
37秒前
40秒前
RED发布了新的文献求助10
44秒前
44秒前
zzyh307完成签到 ,获得积分0
50秒前
yaoyaoyao完成签到 ,获得积分10
53秒前
56秒前
乐乐应助科研通管家采纳,获得10
1分钟前
LUMO完成签到 ,获得积分10
1分钟前
大模型应助zlf采纳,获得10
1分钟前
jindui完成签到 ,获得积分10
1分钟前
寻道图强应助Jamiter采纳,获得30
1分钟前
1分钟前
文献无碍完成签到,获得积分10
1分钟前
2分钟前
2分钟前
2分钟前
烂漫的白薇完成签到,获得积分10
2分钟前
ronnie147完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
嗝嗝发布了新的文献求助10
2分钟前
2分钟前
嗝嗝完成签到,获得积分10
3分钟前
机智的映之完成签到 ,获得积分10
3分钟前
大个应助科研通管家采纳,获得10
3分钟前
3分钟前
大模型应助科研通管家采纳,获得10
3分钟前
3分钟前
aiiLuX完成签到 ,获得积分10
3分钟前
wy123完成签到 ,获得积分10
3分钟前
3分钟前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162300
求助须知:如何正确求助?哪些是违规求助? 2813318
关于积分的说明 7899633
捐赠科研通 2472677
什么是DOI,文献DOI怎么找? 1316507
科研通“疑难数据库(出版商)”最低求助积分说明 631365
版权声明 602142