Multi-Agent Reinforcement Learning with Hierarchical Coordination for Emergency Responder Stationing

强化学习 第一响应者 钢筋 计算机科学 基于Agent的模型 人工智能 心理学 医疗急救 医学 社会心理学
作者
Amutheezan Sivagnanam,Geoffrey Pettet,Hunter Lee,Ayan Mukhopadhyay,Abhishek Dubey,Áron Lászka
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2405.13205
摘要

An emergency responder management (ERM) system dispatches responders, such as ambulances, when it receives requests for medical aid. ERM systems can also proactively reposition responders between predesignated waiting locations to cover any gaps that arise due to the prior dispatch of responders or significant changes in the distribution of anticipated requests. Optimal repositioning is computationally challenging due to the exponential number of ways to allocate responders between locations and the uncertainty in future requests. The state-of-the-art approach in proactive repositioning is a hierarchical approach based on spatial decomposition and online Monte Carlo tree search, which may require minutes of computation for each decision in a domain where seconds can save lives. We address the issue of long decision times by introducing a novel reinforcement learning (RL) approach, based on the same hierarchical decomposition, but replacing online search with learning. To address the computational challenges posed by large, variable-dimensional, and discrete state and action spaces, we propose: (1) actor-critic based agents that incorporate transformers to handle variable-dimensional states and actions, (2) projections to fixed-dimensional observations to handle complex states, and (3) combinatorial techniques to map continuous actions to discrete allocations. We evaluate our approach using real-world data from two U.S. cities, Nashville, TN and Seattle, WA. Our experiments show that compared to the state of the art, our approach reduces computation time per decision by three orders of magnitude, while also slightly reducing average ambulance response time by 5 seconds.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
YixiaoWang完成签到,获得积分20
4秒前
苏苏完成签到,获得积分10
4秒前
小魔女完成签到,获得积分10
6秒前
善学以致用应助东方越彬采纳,获得20
6秒前
6秒前
6秒前
7秒前
7秒前
牛牛发布了新的文献求助10
7秒前
zxy应助zianlai采纳,获得10
8秒前
桐桐应助忧郁的猕猴桃采纳,获得10
8秒前
科目三应助YAMO一采纳,获得10
9秒前
苏苏发布了新的文献求助20
10秒前
达克赛德发布了新的文献求助10
10秒前
Peter_Zhu完成签到,获得积分10
10秒前
脑洞疼应助热情起眸采纳,获得10
10秒前
Sy发布了新的文献求助10
11秒前
瘦瘦语蕊发布了新的文献求助10
12秒前
12秒前
慕青应助柳大宝采纳,获得10
13秒前
爱大美完成签到,获得积分10
13秒前
李子发布了新的文献求助10
13秒前
XJ发布了新的文献求助10
14秒前
15秒前
独孤骄子完成签到 ,获得积分0
15秒前
Cell完成签到 ,获得积分10
16秒前
Cell完成签到 ,获得积分10
16秒前
传奇3应助kingjames采纳,获得10
16秒前
富富富发布了新的文献求助10
16秒前
kk发布了新的文献求助10
17秒前
17秒前
17秒前
MaFY完成签到,获得积分10
18秒前
自信鞯完成签到,获得积分10
19秒前
judy发布了新的文献求助10
19秒前
量子星尘发布了新的文献求助10
19秒前
瘦瘦语蕊完成签到,获得积分10
21秒前
21秒前
22秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956520
求助须知:如何正确求助?哪些是违规求助? 3502600
关于积分的说明 11109235
捐赠科研通 3233391
什么是DOI,文献DOI怎么找? 1787343
邀请新用户注册赠送积分活动 870607
科研通“疑难数据库(出版商)”最低求助积分说明 802123