陶瓷
材料科学
光致聚合物
3D打印
复合材料
脆性
聚合物
制作
纳米技术
聚合
医学
替代医学
病理
作者
Xin Xu,Yixian Wang,Desheng Liu,Xingxing Yang,Yaozhong Lu,Pan Jiang,Xiaolong Wang
标识
DOI:10.1002/adma.202404469
摘要
Shaping ceramic materials into sophisticated architecture with 3D hierarchical structure is desirable in multiapplication yet remains challenge due to their brittle and stiff nature. Herein, a new method to achieve ceramic architectures with unsupported and large-spanning structure by shaping vat photopolymerization 3D printed hydrogel preceramic skeleton with unique flexible and deformable character is proposed. Specifically, the present photopolymerizable hydrogel preceramic achieves one stone, two birds: the photosensitive polymer matrix coupled with ceramic nanoparticles for the first shaping by vat photopolymerization 3D printing and the secondary plasticity of the 3D printed ceramic body through flexible shape deformation of hydrogel networks. Inorganic binder aluminum dihydrogen phosphate serves as hydrogel dispersion medium to achieve ultralow shrinkage photopolymerization ceramic. Compared with conventional polymer-derived photocuring ceramics, the linear shrinkage of lamina structure is solely 2%, and which of cubic ceramic structure is just 13.3%. More importantly, one 3D printed preceramic is conducted to reshape repeatedly myriad constructions, realizing reusability of intrinsic brittle ceramic, improving manufacturing fault tolerance rate. Finally, a variety of paradigms for ceramic structure applications are proposed toward stereo circuit, biomedicine, and catalytic applications, breaking the limitation of intrinsic brittleness of ceramic in high-precision manufacturing of complex ceramic devices.
科研通智能强力驱动
Strongly Powered by AbleSci AI