Spatio-Temporal Propagation: An Extended Message Passing Graph Neural Network for Remaining Useful Life Prediction

可解释性 计算机科学 特征提取 人工智能 图形 数据挖掘 人工神经网络 过程(计算) 卷积(计算机科学) 时态数据库 模式识别(心理学) 机器学习 理论计算机科学 操作系统
作者
Ziqian Kong,Xiaohang Jin,Feng Wang,Zhengguo Xu
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/jsen.2024.3404072
摘要

The deep learning (DL) based method for predicting remaining useful life (RUL) has gained lots of attention in the industrial equipment sector. Due to the complexity of modern industrial equipment and the necessity of monitoring multivariate time-series data to obtain comprehensive health information, DL models with spatio-temporal feature extraction have been developed to achieve accurate RUL prediction results. However, in the three typical approaches for spatio-temporal feature extraction (parallel, sequential, and nested), each module is independent and separate, making them ineffective in fusing spatio-temporal information at the same time. Most existing approaches use separated modules to extract spatial and temporal features, where convolution, graph, and recurrent neural networks are often applied. To overcome these limitations, this paper introduces a unified paradigm for spatio-temporal feature fusion. By extending the message-passing graph neural network (GNN), the spatio-temporal propagation (STP) model is constructed. Using GNN as a single structure, the model can simultaneously match information propagation at both spatial and temporal scales. STP allows a flexible and intuitive way to construct RUL prediction models. An implementation of STP-GNN with an attention mechanism is given and discussed, and a case study on RUL prediction of turbofan engines is reported. Experimental results verify the effectiveness of STP-GNN, and highlight its interpretability in the process of RUL prediciton.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
hurry完成签到,获得积分10
刚刚
Hungrylunch应助陈玉婷采纳,获得20
刚刚
领导范儿应助hu970采纳,获得10
1秒前
new_vision发布了新的文献求助10
1秒前
拼搏翠桃完成签到,获得积分10
2秒前
糖糖科研顺利呀完成签到 ,获得积分10
2秒前
2秒前
阿秋完成签到,获得积分10
2秒前
Pangsj发布了新的文献求助10
3秒前
hhh发布了新的文献求助10
3秒前
好运藏在善良里完成签到,获得积分10
3秒前
情怀应助奋斗映寒采纳,获得10
3秒前
4秒前
CodeCraft应助牧海冬采纳,获得10
4秒前
zxcv23完成签到,获得积分10
4秒前
5秒前
小离发布了新的文献求助10
5秒前
yug完成签到,获得积分10
5秒前
坟里唱情歌完成签到 ,获得积分10
6秒前
kbj完成签到,获得积分10
6秒前
哈哈哈哈完成签到,获得积分10
6秒前
7秒前
7秒前
7秒前
科研雷锋发布了新的文献求助10
7秒前
gen完成签到,获得积分10
7秒前
简单的丑完成签到,获得积分10
8秒前
今后应助日天的马铃薯采纳,获得10
8秒前
8秒前
8秒前
我是老大应助Ll采纳,获得10
8秒前
Lance先生完成签到,获得积分10
8秒前
9秒前
ChangSZ完成签到,获得积分10
9秒前
日月山河永在完成签到,获得积分10
9秒前
甜蜜英姑完成签到,获得积分10
10秒前
10秒前
怕黑向秋完成签到,获得积分10
10秒前
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672